首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most damaging diseases of wheat worldwide, especially in China. Growing resistant cultivars is the most effective approach to control the disease, but few effective resistance genes are available. Guinong 22, one of the wheat cultivars used for differentiated Chinese race of the pathogen, has unknown resistance gene(s) to stripe rust. Genetic analysis, molecular mapping and allelic analysis were used in this study to determine the inheritance and chromosomal location of the gene(s) in Guinong 22 with the most prevalent Pst race CYR33. Genetic analysis indicated that a single recessive gene yrGn22 confers the resistance to CYR33. A total of 450 simple sequence repeat (SSR) primer pairs and 31 pairs of sequence‐tagged site (STS) or conserved primers were selected to screen the resistant bulk and susceptible bulk as well as the parents. Seven polymorphic SSR markers and two STS markers were then used to genotype 113 F2 individual plants. Linkage analysis indicated that all nine markers were linked to yrGn22, with genetic distances ranging from 2.2 to 11.1 cM. Based on the chromosomal locations of the linked markers, yrGn22 was located on wheat chromosome 1B near the centromere. The pedigree, common markers, chromosome location, resistance and allelism tests indicated that yrGn22 is either linked to Yr26 or possibly the same gene.  相似文献   

2.
Stripe rust caused by Puccinia striiformis f.sp. tritici is the most serious disease of wheat globally including south‐eastern Anatolia of Turkey, where wheat originated. In this study, 12 spring wheat genotypes were artificially inoculated and preserved in two locations, Diyarbak?r and Ad?yaman, during the 2011–2012 season to investigate loss in yield and yield components. Genotypes were evaluated at the adult plant stage using two partial resistance parameters: final disease severity and area under the disease progress curve (AUDPC). AUDPC ranged from 14.8 to 860 in Diyarbak?r, and 74 to 760 in Ad?yaman. Yield loss ranged from 0.6 to 68.5% in Diyarbak?r and 9.8 to 56.8% in Ad?yaman. Genotypes G1, G5, G7 and G8 were found to lose less yield, while higher yield loss was observed in G3, G4 (Nurkent), G5 and G9 (Karacada?‐98). The highest loss in thousand kernel weight was observed in a susceptible cultivar Karacada?‐98 in Diyarbak?r followed by 43.4 and 24.4% in Ad?yaman. Test weight loss reached 8.89% in Diyarbak?r and 20.8% in Ad?yaman. Yield loss and AUDPC had a positive significant relationship. Based on the values of AUDPC, final disease severity and yield loss, three major clusters were formed for 12 wheat genotypes. Partially resistant genotypes were found to lose less grain yield and seemed to be stronger against severe stripe rust pressure.  相似文献   

3.
The Roegneria kamoji accession ZY 1007 was resistant to the mixed predominant races of Puccinia striiformis f.sp. tritici (Pst) in China based on field tests at adult‐plant stage. The seedling resistance evaluation of ZY 1007 showed that it was resistant to stripe rust physiological strains CYR29, CYR33 and PST‐V26, which were the predominant races of Pst in China. The female parent R. kamoji cv. Gansi No.1 (susceptible to Pst) was crossed with ZY 1007 (resistant to Pst). Parents, F1 and F2 populations were tested in a field inoculated with the mixed urediniospores. ZY 1007 and all the observed 11 F1 hybrid plants were resistant, while plants of Gansi No.1 were susceptible. Among the 221 F2 plants, 168 plants were resistant and 53 were susceptible, and the segregation of resistant and susceptible plants fits 3R:1S ratio (χ2 = 0.074, P > 0.75). It confirmed that the resistance of stripe rust in ZY 1007 was controlled by a single dominant gene and temporarily designated as YrK1007.  相似文献   

4.
Stripe rust of winter bread wheat (Triticum aestivum L.) causes substantial grain yield loss in Central Asia. This study involved two replicated field experiments undertaken in 2009–2010 and 2010–2011 winter wheat crop seasons. The first experiment was conducted to determine grain yield reductions on susceptible winter wheat cultivars using single and two sprays of fungicide at Zadoks growth stages Z61–Z69 in two farmers’ fields in Tajikistan and one farmer's field in Uzbekistan. In the second experiment, four different fungicides at two concentrations were evaluated at Zadoks growth stage Z69. These included three products from BASF – Opus (0.5 l/ha and 1.0 l/ha), Platoon (0.5 l/ha and 1.0 l/ha) and Opera (0.75 l/ha and 1.5 l/ha) – and locally used fungicide Titul 390 (0.5 l/ha and 1.0 l/ha). One and two sprays of fungicides did not differ significantly (P > 0.05) in increasing grain yield. Stripe rust reduced grain yield and 1000‐kernel weight (TKW) from 24 to 39% and from 16 to 24%, respectively. The benefits from the two concentrations of the same fungicide did not consistently resulted in significantly higher grain yield, suggesting that the lower concentrations could be more cost effective. Our study provides important information about the selection of fungicides, spray concentrations and number of spray to control stripe rust and increase grain yield. The findings could play an important role in developing stripe rust management approaches such as fungicide rotation and strategic fungicide applications in Central Asian countries.  相似文献   

5.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most widespread and destructive diseases of wheat worldwide. Resistance breeding is constantly pursued for decades to tackle the variations of prevalent Pst races. Zhongliang 12 has strong resistance to abiotic stresses, wide adaptability, higher resistance to stripe rust and excellent biological characteristics. To identify the resistance gene(s) against stripe rust, Zhongliang 12 was crossed with stripe rust susceptible genotype Mingxian 169, and F1, F2, F2 : 3 and BC1 progenies were tested with Chinese Pst race CYR30 and CYR31 in seedling stage in greenhouse. Zhongliang 12 possessed different dominant genes for resistance to each race. Linkage maps were constructed with four simple sequence repeats (SSRs) markers, Xwmc695, Xcfd20, Xbarc121 and Xbarc49, for the gene on wheat chromosome 7AL conferring resistance to CYR30 (temporarily designated as Yrzhong12‐1) with genetic distance ranging from 3.1 to 10.8 cM and four SSR markers, Xpsp3003, Xcfd2129, Xwmc673 and Xwmc51, for the gene on wheat chromosome 1AL conferring resistance to CYR31 (temporarily designated as Yrzhong12‐2) with genetic distance ranging from 3.9 cM to 9.3 cM. The molecular markers closely linked to each gene should be useful in marker‐assisted selection in breeding programmes for against stripe rust.  相似文献   

6.
小偃6号抗条锈基因遗传分析及分子标记   总被引:6,自引:0,他引:6  
用小麦条锈菌CY 29-m u t3、CY 28、CY 27和CY 25分别接种小偃6号、铭贤169及其F2代各株系,在常温下(15~17℃)和高温下(20~22℃)进行了小偃6号抗条锈基因的遗传分析.结果发现,在常温下,小偃6号对4个条锈菌生理小种的抗病性均由1对显性核基因控制;在高温下,其抗病性由2对或3对基因控制,但其正反交的作用方式不同,抗锈性也可能与细胞质遗传有关;筛选到与抗条锈基因连锁的RAPD标记,分别命名为OPT 17650、OPC 111000.同时,具有长穗偃麦草血缘的小麦品种小偃22对OPC 11进行了验证,明确了其在分子辅助育种中的价值.  相似文献   

7.
黄淮麦区小麦品种(系)中Yr26基因的SSR检测   总被引:1,自引:0,他引:1  
选用与Yr26紧密连锁的SSR标记Xgwm11和Xgwm18结合田间抗性鉴定,对239份黄淮麦区小麦品种(系)进行检测,以明确Yr26基因在黄淮麦区小麦品种资源中的分布.结果表明:共有35份品种(系)含有与Yr26紧密连锁的SSR标记Xgwm18或Xgwm11的特征带,占检测样本的14.6%.在这35份材料中,31份田间抗性鉴定表现免疫至中抗,4份表现中感.分子标记检测与田间抗病性检测吻合度较好,该标记可以用于Yr26基因的分子标记辅助选择.综合分子标记和田间鉴定,31份小麦(系)含有Yr26基因,占102份抗病材料的30.39%.  相似文献   

8.
为了获得温室条件下条形柄锈菌发生体细胞重组而导致毒性变异的直接证据,本研究选取7个美国条形柄锈菌小麦专化型菌系和2个美国条形柄锈菌大麦专化型菌系按照夏孢子颜色和专化型与毒性差异组成9对菌系组合,对于室内混合接种产生的子代菌系用具有不同抗性的小麦或大麦品种进行筛选,采用毒性分析及SSR分子标记技术对条形柄锈菌体细胞重组现象进行了研究。对获取的413个单孢子代菌系进行的毒性分析结果显示,有84个单孢子代菌系的毒性谱表现与亲本菌系不同,初步证明体细胞重组过程的存在。SSR标记分析结果显示,11对SSR引物中有6对引物在5对菌系组合的28个毒性谱不同的单孢子代菌系中,检测发现3个单孢菌系的扩增条带与其亲本菌系不同,且表现为亲本菌系扩增条带的重组,为体细胞重组菌系。这一结果从分子水平上证明了条形柄锈菌在室内接种条件下可以通过体细胞重组产生新小种而导致毒性变异。  相似文献   

9.
Actin filament assembly in plants is a dynamic process, requiring the activity of more than 75 actin‐binding proteins. Central to the regulation of filament assembly and stability is the activity of a conserved family of actin‐depolymerizing factors (ADFs), whose primarily function is to regulate the severing and depolymerization of actin filaments. In recent years, the activity of ADF proteins has been linked to a variety of cellular processes, including those associated with response to stress. Herein, a wheat ADF gene, TaADF4, was identified and characterized. TaADF4 encodes a 139‐amino‐acid protein containing five F‐actin‐binding sites and two G‐actin‐binding sites, and interacts with wheat (Triticum aestivum) Actin1 (TaACT1), in planta. Following treatment of wheat, separately, with jasmonic acid, abscisic acid or with the avirulent race, CYR23, of the stripe rust pathogen Puccinia striiformis f. sp. tritici, we observed a rapid induction in accumulation of TaADF4 mRNA. Interestingly, accumulation of TaADF4 mRNA was diminished in response to inoculation with a virulent race, CYR31. Silencing of TaADF4 resulted in enhanced susceptibility to CYR23, demonstrating a role for TaADF4 in defense signaling. Using a pharmacological‐based approach, coupled with an analysis of host response to pathogen infection, we observed that treatment of plants with the actin‐modifying agent latrunculin B enhanced resistance to CYR23, including increased production of reactive oxygen species and enhancement of localized hypersensitive cell death. Taken together, these data support the hypothesis that TaADF4 positively modulates plant immunity in wheat via the modulation of actin cytoskeletal organization.  相似文献   

10.
以硬粒小麦-粗山羊草人工合成小麦CI184、感病品种‘铭贤169’及其杂交组合的正反交F1以及CI184/‘铭贤169’F2、F2:3家系为材料,鉴定其条锈病抗性,对CI184条锈病抗性进行遗传分析;采用SSR分子标记技术和集群分离分析法进行多态性筛选,以F3抗病鉴定数据为依据,对CI184中条锈病抗性基因进行分子标记定位。结果显示:(1)CI184在苗期抗性鉴定中,对30种小麦条锈菌生理小种表现抗性,但对中国四川新出现的条锈菌生理小种V26表现苗期感病;在田间成株抗性接种鉴定中,CI184对中国流行的小麦条锈菌生理小种条中32、条中33、水源4、水源5、水源7和V26等表现出成株抗性。(2)CI184中条锈病抗性由隐性基因位点控制。(3)仅检测到一个控制条锈病抗性的QTL位点,位于1B染色体上Xgwm18和Xwmc626之间,暂时命名为Qyr.zz_1B,在四川和北京2个环境中可分别解释CI184中13.36%和18.07%的成株抗性贡献率。(4)Qyr.zz_1B位点的3个SSR标记和Yr15的1个SSR标记可以区分该位点与1B染色体上的其他抗条锈病基因,如Yr15、Yr24和Yr26/YrCH42。表明Qyr.zz_1B位点在小麦条锈病的抗病育种中具有潜在的应用价值。  相似文献   

11.
Rust fungi are devastating plant pathogens and cause a large economic impact on wheat production worldwide. To overcome this rapid loss of resistance in varieties, we generated stable transgenic wheat plants expressing short interfering RNAs (siRNAs) targeting potentially vital genes of Puccinia striiformis f. sp. tritici (Pst). Protein kinase A (PKA) has been proved to play important roles in regulating the virulence of phytopathogenic fungi. PsCPK1, a PKA catalytic subunit gene from Pst, is highly induced at the early infection stage of Pst. The instantaneous silencing of PsCPK1 by barley stripe mosaic virus (BSMV)‐mediated host‐induced gene silencing (HIGS) results in a significant reduction in the length of infection hyphae and disease phenotype. These results indicate that PsCPK1 is an important pathogenicity factor by regulating Pst growth and development. Two transgenic lines expressing the RNA interference (RNAi) construct in a normally susceptible wheat cultivar displayed high levels of stable and consistent resistance to Pst throughout the T3 to T4 generations. The presence of the interfering RNAs in transgenic wheat plants was confirmed by northern blotting, and these RNAs were found to efficiently down‐regulate PsCPK1 expression in wheat. This study addresses important aspects for the development of fungal‐derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control cereal rust diseases.  相似文献   

12.
H9020—17—5是一个通过杂交和回交选育的普通小麦—华山新麦草易位系,接种鉴定表明其对条锈病具有优良抗性。遗传学分析证明易位系H9020—17—5的抗条锈性是由单基因控制的显性性状,抗性基因来自于华山新麦草,暂定名为YrHua。为了标记这个来自华山新麦草的抗条锈病基因,利用H9020—17—5与感病小麦品种铭贤169杂交,建立了F2分离群体。应用81对AFLP引物对119个经条锈菌生理小种CY30接种鉴定的F2单株进行了分析,结果得到两个与YrHua基因连锁的AFLP标记PM14(301)和PM42(249),遗传距离分别为5.4cM和2.7cM,并分别位于目标基因的两侧。将标记片段克隆、测序后,根据序列信息和酶切位点多态性设计特异性引物,将AFLP标记PM14(301)转换成了简单的PCR标记。研究结果为标记辅助育种提供了分子选择工具,同时也为进一步精细定位和图位克隆YrHua基因奠定了基础。  相似文献   

13.
The development of improved plant nucleotide‐binding, leucine‐rich repeat (LRR) immune receptors (NLRs) has mostly been based on random mutagenesis or on structural information available for specific receptors complexed with the recognized pathogen effector. Here, we use a targeted mutagenesis approach based on the natural diversity of the Pm3 powdery mildew resistance alleles present in different wheat (Triticum aestivum) genotypes. In order to understand the functional importance of the amino acid polymorphisms between the active immune receptor PM3A and the inactive ancestral variant PM3CS, we exchanged polymorphic regions and residues in the LRR domain of PM3A with the corresponding segments of PM3CS. These novel variants were functionally tested for recognition of the corresponding AVRPM3A2/F2 avirulence protein in Nicotiana benthamiana. We identified polymorphic residues in four regions of PM3A that enhance the immune response, but also residues that reduce it or result in complete loss of function. We found that the identified critical residues in PM3A modify its activation threshold towards different protein variants of AVRPM3A2/F2. PM3A variants with a lowered threshold gave a stronger overall response and gained an extended recognition spectrum. One of these variant proteins with a single amino acid change was stably transformed into wheat, where it conferred race‐specific resistance to mildew. This is a proof of concept that improved PM3A variants with an enlarged recognition spectrum can be engineered based on natural diversity by exchanging single or multiple residues that modulate resistance function.  相似文献   

14.
Grain size and weight are important components of a suite of yield‐related traits in crops. Here, we showed that the CRISPR‐Cas9 gene editing of TaGW7, a homolog of rice OsGW7 encoding a TONNEAU1‐recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homoeologs in the B and D genomes, we showed that mutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homoeologs coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double‐copy mutant showing larger effect than the respective single copy mutants. The TaGW7‐centered gene co‐expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co‐localization of TaGW7 with α‐ and β‐tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetraploid domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7‐associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR‐Cas9 system with cross‐species comparison can help to uncover the function of a gene fixed in wheat for allelic variants targeted by domestication selection and select targets for engineering new gene variants for crop improvement.  相似文献   

15.
Bread wheat is a leading cereal crop worldwide. Limited amount of superior allele loci restricted the progress of molecular improvement in wheat breeding. Here, we revealed new allelic variation distribution for 13 yield‐related traits in series of genome‐wide association studies (GWAS) using the wheat 90K genotyping assay, characterized in 163 bread wheat cultivars. Agronomic traits were investigated in 14 environments at three locations over 3 years. After filtering SNP data sets, GWAS using 20 689 high‐quality SNPs associated 1769 significant loci that explained, on average, ~20% of the phenotypic variation, both detected already reported loci and new promising genomic regions. Of these, repetitive and pleiotropic SNPs on chromosomes 6AS, 6AL, 6BS, 5BL and 7AS were significantly linked to thousand kernel weight, for example BS00021705_51 on 6BS and wsnp_Ex_c32624_41252144 on 6AS, with phenotypic variation explained (PVE) of ~24%, consistently identified in 12 and 13 of the 14 environments, respectively. Kernel length‐related SNPs were mainly identified on chromosomes 7BS, 6AS, 5AL and 5BL. Plant height‐related SNPs on chromosomes 4DS, 6DL, 2DS and 1BL were, respectively, identified in more than 11 environments, with averaged PVE of ~55%. Four SNPs were confirmed to be important genetic loci in two RIL populations. Based on repetivity and PVE, a total of 41 SNP loci possibly played the key role in modulating yield‐related traits of the cultivars surveyed. Distribution of superior alleles at the 41 SNP loci indicated that superior alleles were getting popular with time and modern cultivars had integrated many superior alleles, especially for peduncle length‐ and plant height‐related superior alleles. However, there were still 19 SNP loci showing less than percentages of 50% in modern cultivars, suggesting they should be paid more attention to improve yield‐related traits of cultivars in the Yellow and Huai wheat region. This study could provide useful information for dissection of yield‐related traits and valuable genetic loci for marker‐assisted selection in Chinese wheat breeding programme.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号