共查询到20条相似文献,搜索用时 15 毫秒
1.
The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior. 相似文献
2.
When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long–term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin–Huxley (HH) formalism extended to include time–dependent ion concentrations inside and outside the cell and metabolic energy–driven pumps. We reveal the basic mechanism of a state of free energy–starvation (FES) with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long–lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial–vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator–inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, pumps, and other proteins that regulate ion homeostasis. 相似文献
3.
Jelmer P. Borst Menno Nijboer Niels A. Taatgen Hedderik van Rijn John R. Anderson 《PloS one》2015,10(3)
In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping from model components to brain regions. Although such mappings can be based on the experience of the modeler or on a reading of the literature, a formal method is preferred to prevent researcher-based biases. In this paper we used model-based fMRI analysis to create a data-driven model-brain mapping for five modules of the ACT-R cognitive architecture. We then validated this mapping by applying it to two new datasets with associated models. The new mapping was at least as powerful as an existing mapping that was based on the literature, and indicated where the models were supported by the data and where they have to be improved. We conclude that data-driven model-brain mappings can provide strong constraints on cognitive models, and that model-based fMRI is a suitable way to create such mappings. 相似文献
4.
5.
Abstract: Habitat Conservation Plans are a widely used strategy to balance development and preservation of species of concern and have been used in southern California, USA, to protect the coastal California gnatcatcher (Polioptila californica). Few data exist on gnatcatcher abundance and distribution, and existing data have problems with issues of closure (i.e., sampling occurs in a short enough time period such that abundance or distribution are not changing), detectability, and proper attention to probability-based sampling schemes. Thus, a habitat model has been relied upon in reserve design. California gnatcatchers are the flagship and umbrella species of many plans and we provide the first estimates that incorporate probabilistic sampling and test predictions from the habitat model. Probability of occurrence was 26% (SĚ = 0.06); however, occupancy varied by modeled habitat quality with slopes <40%, warm, and wet sagebrush habitat having higher occupancy probabilities. Interpreting abundance and occupancy probabilities by vegetation type was complicated by error detected in Geographic Information System vegetation metadata files. The slope (1.08, SĚ = 0.66), temperature (0.79, SĚ = 0.70), and precipitation (—2.62, SĚ = 1.21) variables associated with habitat models were stronger influences on occupancy than was patch size (0.48, SĚ = 0.66). Previous models weight patch size equal to slope and climate. Our work demonstrates that probabilistic sampling can be carried out on a large scale and the results provide better information for managers to make decisions about their reserves. 相似文献
6.
Heath Lenwood S. Sioson Allan A. 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2009,6(2):271-280
A multimodal network (MMN) is a novel graph-theoretic formalism designed to capture the structure of biological networks and to represent relationships derived from multiple biological databases. MMNs generalize the standard notions of graphs and hypergraphs, which are the bases of current diagrammatic representations of biological phenomena, and incorporate the concept of mode. Each vertex of an MMN is a biological entity, a biot, while each modal hyperedge is a typed relationship, where the type is given by the mode of the hyperedge. The semantics of each modal hyperedge e is given through denotational semantics, where a valuation function f_{e} defines the relationship among the values of the vertices incident on e. The meaning of an MMN is denoted in terms of the semantics of a hyperedge sequence. A companion paper defines MMNs and concentrates on the structural aspects of MMNs. This paper develops MMN denotational semantics when used as a representation of the semantics of biological networks and discusses applications of MMNs in managing complex biological data. 相似文献
7.
8.
9.
Temporal or delay discounting refers to the phenomenon that the value of a reward is discounted as a function of time to delivery. A range of models have been proposed that approximate the shape of the discount curve describing the relationship between subjective value and time. Recent evidence suggests that more than one free parameter may be required to accurately model human temporal discounting data. Nonetheless, many temporal discounting studies in psychiatry, psychology and neuroeconomics still apply single-parameter models, despite their oftentimes poor fit to single-subject data. Previous comparisons of temporal discounting models have either not taken model complexity into account, or have overlooked particular models. Here we apply model comparison techniques in a large sample of temporal discounting datasets using several discounting models employed in the past. Among the models examined, an exponential-power model from behavioural economics (CS model, Ebert & Prelec 2007) provided the best fit to human laboratory discounting data. Inter-parameter correlations for the winning model were moderate, whereas they were substantial for other dual-parameter models examined. Analyses of previous group and context effects on temporal discounting with the winning model provided additional theoretical insights. The CS model may be a useful tool in future psychiatry, psychology and neuroscience work on inter-temporal choice. 相似文献
10.
The cerebral cortex is divided into many functionally distinct areas. The emergence of these areas during neural development is dependent on the expression patterns of several genes. Along the anterior-posterior axis, gradients of Fgf8, Emx2, Pax6, Coup-tfi, and Sp8 play a particularly strong role in specifying areal identity. However, our understanding of the regulatory interactions between these genes that lead to their confinement to particular spatial patterns is currently qualitative and incomplete. We therefore used a computational model of the interactions between these five genes to determine which interactions, and combinations of interactions, occur in networks that reproduce the anterior-posterior expression patterns observed experimentally. The model treats expression levels as Boolean, reflecting the qualitative nature of the expression data currently available. We simulated gene expression patterns created by all possible networks containing the five genes of interest. We found that only of these networks were able to reproduce the experimentally observed expression patterns. These networks all lacked certain interactions and combinations of interactions including auto-regulation and inductive loops. Many higher order combinations of interactions also never appeared in networks that satisfied our criteria for good performance. While there was remarkable diversity in the structure of the networks that perform well, an analysis of the probability of each interaction gave an indication of which interactions are most likely to be present in the gene network regulating cortical area development. We found that in general, repressive interactions are much more likely than inductive ones, but that mutually repressive loops are not critical for correct network functioning. Overall, our model illuminates the design principles of the gene network regulating cortical area development, and makes novel predictions that can be tested experimentally. 相似文献
11.
Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG). Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network. 相似文献
12.
提出一种使用生长、分级的自组织映射(growing hierarchical self-organizing map,GHSOM)模型进行基于EEG信号的意识任务分类来实现脑机接口技术的方法。GHSOM模型是自组织映射(self-organizing map,SOM)的一种变体,由多层的SOM组成,具有一定的分级结构,能够表达数据中不同层次的信息。同时研究了使用平均量化误差(mean quantization error,mqe)和量化误差(quantization error,qe)两种方法实现的GHSOM模型对意识任务分类的作用。结果表明,GHSOM模型对于意识任务的可分性能够提供可视化的信息,并且发现使用量化误差方法实现的GHSOM模型提供较多的数据信息和较高的分类精度。使用GHSOM模型进行了5类意识任务的分类,平均分类精度可达80%。 相似文献
13.
14.
How is binocular motion information integrated in the bilateral network of wide-field motion-sensitive neurons, called lobula plate tangential cells (LPTCs), in the visual system of flies? It is possible to construct an accurate model of this network because a complete picture of synaptic interactions has been experimentally identified. We investigated the cooperative behavior of the network of horizontal LPTCs underlying the integration of binocular motion information and the information representation in the bilateral LPTC network through numerical simulations on the network model. First, we qualitatively reproduced rotational motion-sensitive response of the H2 cell previously reported in vivo experiments and ascertained that it could be accounted for by the cooperative behavior of the bilateral network mainly via interhemispheric electrical coupling. We demonstrated that the response properties of single H1 and Hu cells, unlike H2 cells, are not influenced by motion stimuli in the contralateral visual hemi-field, but that the correlations between these cell activities are enhanced by the rotational motion stimulus. We next examined the whole population activity by performing principal component analysis (PCA) on the population activities of simulated LPTCs. We showed that the two orthogonal patterns of correlated population activities given by the first two principal components represent the rotational and translational motions, respectively, and similar to the H2 cell, rotational motion produces a stronger response in the network than does translational motion. Furthermore, we found that these population-coding properties are strongly influenced by the interhemispheric electrical coupling. Finally, to test the generality of our conclusions, we used a more simplified model and verified that the numerical results are not specific to the network model we constructed. 相似文献
15.
16.
17.
18.
Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein–protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand–receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with −7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand–receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research. 相似文献
19.
Delia V?rg? Petru Lucian Cur?eu Lauren?iu Maricu?oiu Florin A. Sava Irina Macsinga Silvia M?gurean 《PloS one》2014,9(11)
This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members'' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models. 相似文献