首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lack of a paternal genome in parthenogenetic embryos clearly limits their postimplantation development, but apparently not their preimplantation development, since morphologically normal blastocysts can be formed. The cleavage rate of these embryos during the preimplantation period gives a better indication of the influence of their genetic constitution than blastocyst formation. Conflicting results from previous studies prompted us to use a more suitable method of following the development of haploid and diploid parthenogenetic embryos during this period. Two classes of parthenogenetic embryos were analysed following the activation of oocytes in vitro with 7% ethanol: 1) single pronuclear (haploid) embryos and 2) two pronuclear (diploid) embryos. Each group was then transferred separately during the afternoon to the oviducts of recipients on the 1st day of pseudopregnancy. Control (diploid) 1-cell fertilised embryos were isolated in the morning of finding a vaginal plug, and transferred to pseudopregnant recipients at approximately the same time of the day as the parthenogenones. Embryos were isolated at various times after the HCG injection to induce ovulation, from each of the three groups studied. Total cell counts were made of each embryo, and the log mean values were plotted against time. The gradient of the lines indicated that 1) the cell doubling time of the diploid parthenogenones was 12.25 +/- 0.34 h, and was not significantly different from the value obtained for the control group (12.74 +/- 1.17 h), and that 2) the cell doubling time of the haploid parthenogenones (15.25 +/- 0.99 h) was slower than that of the diploid parthenogenones and the control diploid group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The objective of this study was to determine developmental pattern, total cell number, apoptosis and apoptosis-related gene expression in haploid and diploid embryos following parthenogenetic activation. In vitro-matured porcine oocytes were activated by electrical pulses and cultured in the absence or presence of cytochalasin B for 3 h. Zygotes with two polar bodies (haploid) and one polar body (diploid) were carefully selected and were further cultured in NCSU 23 medium containing 0.4% bovine serum albumin (BSA) for 7 days. The percentage of development to blastocyst stage was higher (p < 0.01) in the diploid than in the haploid parthenotes. In haploid blastocysts, average total cell number was significantly reduced (p < 0.05) and apoptosis was increased at day 7. The relative abundance of Bcl-xL and Bak mRNA in the diploid blastocysts was similar to that of in vivo-fertilized embryos. However, Bcl-xL was significantly decreased, and Bak mRNA was significantly increased (p < 0.05) in haploid parthenotes compared with the diploid parthenotes. These results suggest that the haploid state affects apoptosis-related gene expression which results in increased apoptosis and decreased developmental competence of haploid parthenotes.  相似文献   

3.
Aneuploidy underlies failed development and possibly apoptosis of some preimplantation embryos. We employed a haploid model in the mouse to study the effects of aneuploidy on apoptosis in preimplantation embryos. Mouse metaphase II oocytes that were activated with strontium formed haploid parthenogenetic embryos with 1 pronucleus, whereas activation of oocytes with strontium plus cytochalasin D produced diploid parthenogenetic embryo controls with 2 pronuclei. Strontium induced calcium transients that mimic sperm-induced calcium oscillations, and ploidy was confirmed by chromosomal analysis. Rates of development and apoptosis were compared between haploid and diploid parthenogenetic embryos (parthenotes) and control embryos derived from in vitro fertilization (IVF). Haploid mouse parthenotes cleaved at a slower rate, and most arrested before the blastocyst stage, in contrast to diploid parthenotes or IVF embryos. Developmentally retarded haploid parthenotes exhibited apoptosis at a significantly higher frequency than did diploid parthenotes or IVF embryos. However, diploid parthenotes exhibited rates of preimplantation development and apoptosis similar to those of IVF embryos, indicating that parthenogenetic activation itself does not initiate apoptosis during preimplantation development. These results suggest that haploidy can lead to an increased incidence of apoptosis. Moreover, the initiation of apoptosis during preimplantation development does not require the paternal genome.  相似文献   

4.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

5.
Studies were made on the contribution of haploid-derived parthenogenetic cells to haploid parthenogenetic ? fertilized chimeric embryos on day 9 and 10 of pregnancy. In most cases, the contribution of haploid-derived parthenogenetic cells to embryonic tissues was higher than that to extraembryonic tissues. The contribution of haploid-derived cells to embryonic tissues of some chimeras was more than 90%. Chromosomal analysis showed that actively dividing cells in most chimeric embryos contained about 40 chromosomes, indicating that they were diploidized, as haploid parthenogenetic blastocysts have about 20 chromosomes. Results suggested that haploid-derived parthehogenetic cells in chimeric embryos diploidized spontaneously after the blastocyst stage. These cells were capable of differentiating into most cell types of embryonic tissues, but scarcely differentiated into extraembryonic tissues of day 9 embryos. The fate of haploid-derived parthenogenetic cells during postimplantational development was similar to that of diploid parthenogenetic cells that had been diploidized experimentally in the one-cell stage.  相似文献   

6.
The developmental capability of haploid parthenogenetic cells was investigated by studies on haploid parthenogenetic in equilibrium fertilized mouse chimeras. Two chimeras were born. One female chimera was smaller at birth and grew slower than its littermates. The distribution of haploid-derived cells in the chimeras was analyzed 11 months after their birth. Cells derived from haploid embryos were found only in the brain, eyes, pigment cells in hair follicles, and spleen, in which they constituted 30%, 20%, 10%, and less than 5%, respectively, of the cells. The correlation between the parthenogenetic contribution to the brain and growth retardation is discussed. All of the cells examined in these chimeric organs (brain and eyes) contained a diploid amount of DNA, suggesting that diploidization of the haploid parthenogenetic cells occurred during development. Possibly, the haploid state is not sufficient for cell growth, even in chimeras with fertilized embryos.  相似文献   

7.
Mammalian haploid cell lines provide useful tools for both genetic studies and transgenic animal production. To derive porcine haploid cells, three sets of experiments were conducted. First, genomes of blastomeres from 8-cell to 16-cell porcine parthenogenetically activated (PA) embryos were examined by chromosome spread analysis. An intact haploid genome was maintained by 48.15% of blastomeres. Based on this result, two major approaches for amplifying the haploid cell population were tested. First, embryonic stem-like (ES-like) cells were cultured from PA blastocyst stage embryos, and second, fetal fibroblasts from implanted day 30 PA fetuses were cultured. A total of six ES-like cell lines were derived from PA blastocysts. No chromosome spread with exactly 19 chromosomes (the normal haploid complement) was found. Four cell lines showed a tendency to develop to polyploidy (more than 38 chromosomes). The karyotypes of the fetal fibroblasts showed different abnormalities. Cells with 19–38 chromosomes were the predominant karyotype (59.48–60.91%). The diploid cells were the second most observed karyotype (16.17%–22.73%). Although a low percentage (3.45–8.33%) of cells with 19 chromosomes were detected in 18.52% of the fetus-derived cell lines, these cells were not authentic haploid cells since they exhibited random losses or gains of some chromosomes. The haploid fibroblasts were not efficiently enriched via flow cytometry sorting. On the contrary, the diploid cells were efficiently enriched. The enriched parthenogenetic diploid cells showed normal karyotypes and expressed paternally imprinted genes at extremely low levels. We concluded that only a limited number of authentic haploid cells could be obtained from porcine cleavage-stage parthenogenetic embryos. Unlike mouse, the karyotype of porcine PA embryo-derived haploid cells is not stable, long-term culture of parthenogenetic embryos, either in vivo or in vitro, resulted in abnormal karyotypes. The porcine PA embryo-derived diploid fibroblasts enriched from sorting might be candidate cells for paternally imprinted gene research.  相似文献   

8.
Abstract. The predominance of sexuality in eukaryotes remains an evolutionary paradox, given the "two-fold cost of sex" also known as the "cost of males." [Correction added after online publication 29 January 2009: in the preceding sentence, extraneous words were deleted.] As it requires two sexual parents to reproduce and only one parthenogenetic parent, parthenogens should have twice the reproductive rate compared with their sexual counterparts and their genes should spread twice as fast, if all else is equal. Yet, parthenogenesis is relatively rare and considered an evolutionary dead-end, while sexuality is the dominant form of reproduction in multicellular eukaryotes. Many studies have explored short-term benefits of sex that could outweigh its two-fold cost, but few have compared fecundity between closely related sexuals and parthenogens to first verify that "all else is equal" reproductively. We compared six fecundity measures between sexual and parthenogenetic populations of the freshwater snail, Campeloma limum , during a brooding cycle (1 year) across two drainages. Drainages were analyzed separately because of a significant drainage effect. In the Savannah drainage, fecundity was not significantly different between sexuals and parthenogens, even though parthenogens had significantly more empty egg capsules per brood. In the Ogeechee drainage, parthenogens had significantly more egg capsules with multiple embryos and more hatched embryos than sexuals. Taken over 1 year, embryo size was not significantly different between parthenogens and sexuals in either drainage. Given these results and the close proximity of sexual and parthenogenetic populations, it is perplexing why parthenogenetic populations have not completely replaced sexual populations in C. limum.  相似文献   

9.
10.
In this study, we compared the developmental capacity of bovine haploid and diploid androgenetic and parthenogenetic embryos obtained by different methods. Androgenetic embryos were produced by piezo-intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) of enucleated oocytes with or without subsequent pronuclear transfer from one haploid zygote to another. Parthenogenetic embryos were obtained by activation of matured oocytes by ionomycin combined with cycloheximide or 6-dimethylaminopurine (DMAP) treatment. Only few cleaved androgenetic haploid embryos were able to compact (2.7%) and to form blastocysts (1.8%), while significantly more haploid parthenogenotes underwent compaction (24-37%) and a minority developed to blastocysts at different rates, depending on the activation procedure (cycloheximide 3%, 6-DMAP 14.5%). By contrast, development to blastocyst of diploid androgenotes, cloned androgenetic embryos, and parthenogenotes (31%, 39%, and 43%, respectively) was similar to IVF control embryos (35%). Cell number on Day 7 was higher for IVF blastocysts and decreased in consecutive order in diploid androgenotes, diploid parthenogenotes, and haploid uniparental embryos. Following transfer of diploid androgenetic embryos, a pregnancy was established and maintained up to Day 28.  相似文献   

11.
Park CH  Uh KJ  Mulligan BP  Jeung EB  Hyun SH  Shin T  Ka H  Lee CK 《PloS one》2011,6(7):e22216
In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint. However, several differentially expressed genes (H19, IGF2, XIST and PEG10) were detected amongst the classes at the blastocyst stage of development. Most interestingly and despite the fact that maternally and paternally expressed genes should not be expressed in androgenones and parthenogenones, respectively, both uniparental embryos expressed these genes when tested for in this study. In order to account for this phenomenon, we compared the expression patterns of eight imprinted genes along with the methylation status of the IGF2/H19 DMR3 in haploid and diploid parthenogenetic embryos. Our findings revealed that IGF2, NNAT and PEG10 were silenced in haploid but not diploid parthenogenetic blastocysts and differential methylation of the IGF2/H19 DMR3 was consistently observed between haploid and diploid parthenogenetic blastocysts. These results appear to suggest that there exists a process to adjust the expression status of imprinted genes in diploid parthenogenetic embryos and that this phenomenon may be associated with altered methylation at an imprinting control region. In addition we believe that imprinted expression occurs in at least four genes, namely H19, IGF2, XIST and PEG10 in porcine blastocyst stage embryos.  相似文献   

12.
Ko Harada  Edward G. Buss 《Genetics》1981,98(2):335-345
In the early stages of parthenogenetic development in turkey eggs, many blastoderms are mosaics of haploid, diploid and polyploid cells. The genome composition of these blastoderms can be identified by C-banding. They may be generally described as either A-Z/2A-ZZ/nA-nZ or A-W/2A-WW/nA-nW and are found in a nearly 1:1 ratio. The blastoderms showing the W body (W+) become lethal within two days of incubation. The haploid cell proportion decreases rapidly during the early stage of development, and, as haploid cells decrease, the proportion of polyploid cells appears to increase. At six days of incubation, various kinds of parthenogenetic development can be observed. Their genome compositions are either diploid (2A-ZZ) or mosaic (A-Z/2A-ZZ). These findings suggest that diploid parthenogenesis occurs by either suppression of meiosis II or chromosome doubling some time after the first cleavage division. The frequent occurrence of mosaic blastoderms indicates that the majority, if not all, of the parthenogenetic embryos initiate their development in haploid ova.  相似文献   

13.
Parthenogenesis, including facultative parthenogenesis, is common among orthopteroid insects. We investigated the fitness associated with sexual and asexual reproduction within a population of the facultatively parthenogenetic cockroach Nauphoeta cinerea. There is significantly reduced fitness for females reproducing parthenogenetically compared to sexually. Fewer than half of all females can reproduce parthenogenetically. In addition, tenfold fewer offspring are produced by parthenogenesis due to reductions in both the number of offspring produced per clutch and the number of clutches produced. Development and brooding of sexually or parthenogenetically produced first instar nymphs does not differ, although the production of the first parthenogenetic clutch is delayed relative to the first sexually produced clutch. The fitness of parthenogens is also lower than the fitness of sexually produced offspring. Parthenogens are less viable than sexually produced offspring even in the benign conditions of the laboratory. Development to adulthood of parthenogens is slower. Fewer parthenogens survive to adulthood and the adult life span of parthenogens is reduced. Individuals produced by parthenogenetic reproduction are unlikely to reproduce parthenogenetically themselves. Finally, parthenogenetically produced females produce fewer offspring by sexual reproduction than do sexually produced females. Since parthenogenetic reproduction is apomictic in N. cinerea and parthenogens are diploid, we suggest that asexual reproduction is developmentally constrained. Once meiosis has evolved, returning to a mitotic mode of reproduction may be difficult. Nauphoeta cinerea offers a system for testing how asexuality is constrained as modes of reproduction can be compared within a facultative parthenogen.  相似文献   

14.
One-cell parthenogenetic haploid embryos and blastomeres of the 2- and 4-cell diploid mouse embryos were observed in vitro for the occurrence of two cytoplasmic activities: the cortical activity and the chromatin condensation activity. For this purpose anucleated halves (AHs) and nucleated halves (NHs) were produced by bisection of one-cell embryos and of blastomeres. The cortical activity (manifested by surface deformations) was observed only during the first cleavage cycle. In AHs the surface activity began at the same time as in NHs and disappeared before the time of the cleavage division of nucleated halves. Anucleate fragments of blastomeres from 2- and 4-cell embryos did not exhibit any cortical activity. In the absence of the native nucleus the chromatin condensation activity (assayed by premature chromatin condensation of interphase thymocyte nuclei introduced into cytoplasts by cell fusion) could also have been detected only in the first cleavage cycle. In AHs this activity appeared at the time when NHs started to cleave and disappeared after the NHs finished the first cleavage division. AHs obtained from 2-cell and 4-cell stage blastomeres did not reveal condensation activity. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Haploid embryonic stem cells (ESCs) have recently been derived from parthenogenetic mouse embryos and offer new possibilities for genetic screens. The ability of haploid ESCs to give rise to a wide range of differentiated cell types in the embryo and in vitro has been demonstrated. However, it has remained unclear whether haploid ESCs can contribute to the germline. Here, we show that parthenogenetic haploid ESCs at high passage have robust germline competence enabling the production of transgenic mouse strains from genetically modified haploid ESCs. We also show that differentiation of haploid ESCs in the embryo correlates with the gain of a diploid karyotype and that diploidisation is the result of endoreduplication and not cell fusion. By contrast, we find that a haploid karyotype is maintained when differentiation to an extra-embryonic fate is forced by induction of Gata6.  相似文献   

16.
Mouse preimplantation embryo development is characterized by a switch from a dependence on the tricarboxylic acid cycle pre-compaction to a metabolism based on glycolysis post-compaction. In view of this, the role of glucose in embryo culture medium has come under increased analysis and has lead to improved development of outbred mouse embryos in glucose free medium. Another type of embryo that has proven difficult to culture is the parthenogenetic (PN) mouse embryo. With this in mind we have investigated the effect of glucose deprivation on PN embryo development in vitro. Haploid and diploid PN embryos were grown in medium M16 with or without glucose (M16-G) and development, glycolytic rate, and methionine incorporation rates assessed. Haploid PN and normal embryo development to the blastocyst stage did not differ in either M16 or M16-G. In contrast, although diploid PN embryos formed blastocysts in M16 (28.3%), they had difficulty in undergoing the morula/blastocyst transition in M16-G (7.6%). There was no significant difference in mean cell numbers of haploid PN, diploid PN and normal embryos cultured in M16 and M16-G at the morula and blastocyst stage. Transfer of diploid PN embryos from M16-G to M16 at the four- to eight-cell stage dramatically increased blastocyst development. At the morula stage diploid PN embryos grown in M16-G exhibited a higher glucose metabolism and protein synthesis compared to those grown in M16 and to haploid PN embryos. Difficulties of diploid PN embryos in undergoing the morula/blastocyst transition in absence of glucose infer the existence of a link between the maternally inherited components and the preimplantation embryos dependence on glucose. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Amount of DNA-Feulgen staining in individual somatic nuclei and mature sperm of the parthenogenetic wasps, Habrobracon juglandis, H. serinopae, and Mormoniella vitripennis, were determined with a scanning microdensitometer. The haploid genome for both species of Habrobracon was estimated to be 0.15–0.16×10–12 g DNA, corresponding to a molecular weight of roughly 10×1010 daltons. The haploid genome of M. vitripennis is approximately twice this value, 0.33–0.34×10–12 g, or about 20×1010 daltons. Measurements made on dividing nuclei from syncytial preblastoderm embryos of H. juglandis and M. vitripennis showed that the chromosomes of impaternate males were present in the haploid number and contained the C amount of DNA; whereas nuclei from female preblastoderm embryos contained the diploid number of chromosomes and the 2C amount of DNA. However, hemocyte and brain cell nuclei from either male or female adult wasps contained 2C and 4C amounts of DNA. Both sexes also showed equivalent levels of polyploidy (8C, 16C, or 32C) in Malpighian tubule nuclei. Therefore, in these parthenogenetic species, a mechanism must exist that compensates during later development for the initial two-fold difference in the chromatin content of somatic nuclei in haploid male and diploid female embryos. Hemocytes from impaternate Mormoniella diploid males and triploid females contain the 2C and 3C amounts of DNA, respectively. Therefore dosage compensation involves an additional cycle of DNA replication only in haploid cells, and it insures that a certain minimum quantity of DNA is received by each somatic cell.  相似文献   

18.
Silver staining technique visualizing argentophilic nucleolus organizer regions (Ag-NORs) was used for studying parthenogenetic mouse embryos produced by artificial activation of oocytes in Ca(2+)-Mg(2+)-free medium. Ag-NOR-containing chromosomes were detected in metaphases of parthenogenetic embryos during six successive cleavage divisions starting with the two-cell stage. The frequency of metaphases with varying AG-NOR number in diploid parthenogenones was similar to that in the control (fertilized) embryos. Average number of metaphase Ag-NOR chromosomes (calculated per diploid chromosome set) in haploid parthenogenones exceeded that in the control; in some cases all NORs were stained by silver. This is evidence that latent ribosomal cistrons in some chromosomes can be activated.  相似文献   

19.
Parthenogenetic sporophytes were obtained from three strains of Laminaria japonica Areschoug. These sporophytes grew to maturity in the sea, producine spores that all grew into female gametophytes. These female gametophytes gave rise to another generation of parthenogenetic sporophytes during the next year, so that by the year 1990 parthenogenetic sporophytes had been cultivated for 12, 9, and 7 generations, respectively, for the three strains. When female gametophytes from parthenogenetic sporophytes were combined with normal male gametophytes, normal sporophytes that reproduced and gave rise to both female and male gametophytes were obtained. The parthenogenetic sporophytes were shorter and narrower than the normal sporophytes of the same strain. Chromosome counts on mature sporophytes showed that normal sporophytes (from fertilized eggs) were diploid (2n = approximately 40) and that the spores they produced were haploid (n = approximately 20), while nuclei from both somatic and sporangial cells in parthenogenetic sporophytes were haploid. All gametophytes were haploid. Young sporophytes derived from cultures with both female and male gametophytes were diploid, while young, sporophytes obtained from female gametophytes from parthenogenetic sporophytes had haploid, diploid, or polyploidy chromosome numbers. Polyploidy was associated with abnormal cell shapes. The presence of haploid parthenogenetic sporophytes should be use in breeding kelp strains with useful characteristics, since the sporophyte phenotype is expressed from a haploid genotype which can be more readily selected.  相似文献   

20.
The female parthenogenetic haploid embryos can be stored long-term by cryopreservation. Briefly, rabbit haploid parthenotes at the 32-cell stage were produced by electroactivation and in vitro culture. At this embryonic stage, parthenotes were individually cryopreserved by a slow-freezing procedure. After thawing, every embryo was disaggregated and blastomeres used as haploid maternal donors of nuclei. These nuclei were transferred to androgenetic haploid hemizygotes, obtained by female pronuclear removal offertilizedova. In the firstexperiment, 38 out of 87 reconstructedheteroparental diploid zygotes reachedthe hatched blastocyst stage invitro. In the second experiment, ourpurpose was toobtain live pups from each frozen-thawed parthenote. Viable offspring (at least one live pup at delivery) were obtained from five out of seven frozen-thawed haploid morula used as donors, with three live hemiclones being the highest number of pups produced from a single thawed parthenote. These results indicate that the rabbit female gametic endowment can be successfully stored by cryopreservation of parthenogenetic haploid embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号