首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H E Varmus  T Padgett  S Heasley  G Simon  J M Bishop 《Cell》1977,11(2):307-319
We have used two experimental strategies to test the role of cellular functions in the synthesis and integration of virus-specific DNA in cells infected by avian sarcoma virus.First, quail embryo fibroblasts, placed in stationary phase (G0) by prolonged serum starvation, did not support the efficient synthesis of viral DNA during the first 24–48 hr after infection. Synthesis of viral DNA was impaired according to at least two parameters: the amount of DNA was diminished, particularly the amount of the plus-strand DNA (identical in polarity to the viral genome); and the length of both minus and plus strands was reduced in the stationary cells. In parallel cultures fed with fresh serum, over two thirds of the cells were able to reenter the cell cycle within 24 hr, and viral DNA of normal size was synthesized.Second, density labeling of viral and cellular DNA with BUdR was used to determine whether cellular DNA synthesis was required for integration of viral DNA. In both quail embryo fibroblasts released from G0 by serum replacement and randomly growing duck embryo fibroblasts, viral DNA was integrated only into cellular DNA replicated during the infection.Our results indicate that serum-starved cells lack a factor (or factors) required for the efficient and complete synthesis of ASV-specific DNA. We have not been able to establish whether such factor(s) are present in growing cells only during S phase. Integration of viral DNA appears to require cellular DNA synthesis; this may be due to a requirement for a factor (or factors) present in adequate concentration only during S phase or to a requirement for the structural changes in cellular DNA that accompany replication.  相似文献   

2.
Viral DNA was found to be tightly associated with the nuclear matrix from HeLa cells lytically infected with human adenovirus type 5. The bound viral DNA, like cell DNA, was resistant to nonionic detergent and to extraction with high-salt (2 M NaCl) solution. However, whereas over 95% of the cell DNA was recovered in the matrix fraction, the amount of associated viral DNA varied during infection. Throughout the lytic cycle, the amount of matrix-associated adenovirus type 5 DNA increased until it reached a plateau level at 20 to 24 h after infection. At this stage, the matrix-bound DNA represented 87% of the total viral DNA; after this stage, additional newly synthesized viral DNA accumulated as non-matrix-associated DNA. DNase digestion studies revealed that all viral DNA sequences were equally represented in the matrix-bound DNA both early and late in infection; thus, unlike cell DNA, there seem to be no preferred attachment sites on the viral genome. An enrichment of viral DNA relative to cell DNA was found in the matrix-associated DNA after extensive DNase I digestion. This finding, together with an in situ hybridization study, suggests that the viral DNA is more intimately associated with the nuclear matrix than is cell DNA and probably does not exist in extended loops.  相似文献   

3.
Adenovirus type 5 contains linear double-stranded DNA with protein covalently attached to the ends of the molecules. The presence of protein at the termini of intracellular viral DNA in adenovirus type 5-infected cells was investigated at different stages during the replication process. The intracellular viral DNA was isolated from the nuclei by lysis in 4 M guanidine hydrochloride. Electrophoresis on agarose gels of HsuI restriction enzyme fragments and sucrose gradient centrifugation were used to detect protein on intracellular viral DNA. After uncoating parental DNA still contains protein attached to the termini of the viral genome. Replicating and mature progeny viral DNA can also be isolated in the form of DNA-protein complexes. These complexes exhibit the same properties as the DNA-protein complex isolated from purified virions. These results suggest that the protein at the termini of intracellular viral DNA is identical to the protein attached to the 5'-ends of the DNA extracted from virions and that it is possibly involved in the replication of viral DNA.  相似文献   

4.
Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.  相似文献   

5.
Three principal forms of viral DNA have been identified in cells infected with avian sarcoma virus: (i) a linear duplex molecule synthesized in the cytoplasm, (ii) a covalently closed circular molecule found in the nucleus, and (iii) proviral DNA covalently linked to high-molecular-weight cell DNA. To define precursor product relationships among these forms of viral DNA, we performed pulsechase experiments using 5-bromodeoxyuridine to label by density the linear species of viral DNA in the cytoplasm during the first 4 h after infection. After a 4-to 8-h chase with thymidine, a portion of the density-labeled viral DNA was transported to the nucleus and converted to a covalently closed circular form. We conclude that linear viral DNA, synthesized in the cytoplasm, is the precursor to closed circular DNA observed in the nucleus.  相似文献   

6.
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.  相似文献   

7.
The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is essential for viral replication and possesses both Pol- and DNA-binding activities. Previous studies demonstrated that the substitution of alanine for each of four arginine residues, which reside on the positively charged surface of UL42, resulted in decreased DNA binding affinity and a decreased ability to synthesize long-chain DNA by the polymerase. In this study, the effects of each substitution on the production of viral progeny, viral DNA replication, and DNA replication fidelity were examined. Each substitution mutant was able to complement the replication of a UL42 null mutant in transient complementation assays and to support the replication of plasmid DNA containing herpes simplex virus type 1 (HSV-1) origin sequences in transient DNA replication assays. Mutant viruses containing each substitution and a lacZ insertion in a nonessential region of the genome were constructed and characterized. In single-cycle growth assays, the mutants produced significantly less progeny virus than the control virus containing wild-type UL42. Real-time PCR assays revealed that these UL42 mutants synthesized less viral DNA during the early phase of infection. Interestingly, during the late phase of infection, the mutant viruses synthesized larger amounts of viral DNA than the control virus. The frequencies of mutations of the virus-borne lacZ gene increased significantly in the substitution mutants compared to those observed for the control virus. These results demonstrate that the reduced DNA binding of UL42 is associated with significant effects on virus yields, viral DNA replication, and replication fidelity. Thus, a processivity factor can influence replication fidelity in mammalian cells.  相似文献   

8.
Initiation rate of adenovirus DNA synthesis in infected cell   总被引:1,自引:0,他引:1  
A method was developed to determine the rate of viral DNA synthesis initiation in adenovirus 2-infected cells. The initiation of DNA synthesis appeared as the rate-limiting step for accumulation of viral DNA. The multiplicity of infection slightly influenced the rate of synthesis of viral DNA, and only during the linear phase of viral DNA production. The initiation of DNA-synthesis was found to occur preferentially on newly synthesized DNA molecules. These kinetics data and the effect of novobiocin suggested that binding of viral DNA with some enzymatic complexes favored the replication of a minor, active class of adenovirus DNA molecules.  相似文献   

9.
The human adenovirus DNA genome contains a protein (CBP, or covalently bound protein) linked to each 5' terminus. To assess whether CBP is synthesized early, infected cells were incubated with hydroxyurea from 1 to 18 h postinfection, the hydroxyurea was removed, cycloheximide was added, and viral DNA was labeled with [3H]thymidine from 18 to 23 h postinfection. Removal of hydroxyurea at 18 h postinfection permits the synthesis of viral DNA, whereas cycloheximide maintains the block in late viral protein synthesis. Three lines of evidence are presented to show that viral 3H-labeled DNA prepared by this procedure was linked to CBP: (I) the DNA sedimented more rapidly than protein-free DNA (i.e., protinase treated) in neutral sucrose gradients containing guanidine hydrochloride; (ii) the DNA banded at a lower density than protein-free DNA in CsCl gradients containing guanidine hydrochloride; and (iii) neither the 3H-labeled DNA nor the end fragments produced by EcoRI digestion entered a 1.4% agarose gel during electrophoresis. These experiments are strong evidence that CBP is not a product of a late viral gene and is therefore the product of either an early viral gene or a cell gene. Experiments were performed to test whether CBP is attached to viral DNA synthesized in vitro by a soluble complex that synthesizes exclusively viral DNA as completed viral genomes in vitro. In vitro-labeled DNA was analyzed by velocity sedimentation, equilibrium sedimentation, and agarose gel electrophoresis as described above. Our results indicate that the majority of in vitro-synthesized DNA molecules were attached to CBP. These results, which indicate that CBP is synthesized early after infection and is attached to viral DNA labeled in vitro by a soluble replication complex, are consistent with the idea that CBP may play a role in viral DNA replication.  相似文献   

10.
Effect of aphidicolin on avian sarcoma virus replication.   总被引:11,自引:4,他引:7       下载免费PDF全文
We studied the effect of aphidicolin, an inhibitor of eucaryotic DNA polymerase alpha, on viral DNA replication and integration during the first 24 h after infection of quail embryo fibroblasts with avian sarcoma virus. In drug-treated cells, the synthesis of unintegrated linear viral DNA species was not impaired; however, the subsequent accumulation of circular viral DNA species and integrated proviral DNA was reversibly inhibited. After removal of the drug, circular viral DNA species were derived from preexisting linear viral DNA species, instead of being derived by de novo synthesis.  相似文献   

11.
The synthesis of deoxyribonucleic acid (DNA) during in vivo infection of chick epithelium with fowlpox virus was examined by incorporation of tritiated thymidine into the acid-insoluble fraction. The proportion of precursor incorporated into host and viral DNA at various times after infection was determined by chromatography on columns of methylated albumin-kieselguhr. The first 60-hr period of infection was characterized by the synthesis of predominantly host DNA, the rate of production of which increased markedly over the control between 36 and 48 hr postinoculation (PI). Although the replication of viral DNA began between 12 and 24 hr PI, the rate of synthesis was very low during the first 60 hr. In contrast, an abrupt increase in the rate of viral DNA synthesis occurred between 60 and 72 hr PI, concomitantly with a sharp decline of host DNA synthesis. Subsequently, between 72 and 96 hr, the ratio of synthesis of viral DNA to host DNA progressively increased to a maximum of greater than 2:1. The temporal relationship of this biphasic pattern of host and viral DNA synthesis to hyperplasia and viral replication is discussed.  相似文献   

12.
Host and viral deoxyribonucleic acid (DNA) metabolism in LPP-1-infected Plectonema boryanum was studied by equilibrium centrifugation in CsCl gradients. Approximately 50% of the host DNA is degraded to acid-soluble material between 3 and 7 hr after infection. Most of the acid-soluble product is reincorporated into viral DNA. Incorporation of exogenous (3)H-adenine into viral DNA can be detected very early after infection (within the first 2 hr), but the bulk of viral DNA synthesis occurs between 6 and 8 hr. Both the breakdown of host DNA and the synthesis of viral DNA require protein synthesis during the first few hours of infection.  相似文献   

13.
14.
The proteins associated with parental, adenoviral DNA in productively-infected HeLa cells have been examined both directly and indirectly. HeLa cells infected with 32P-labelled Ad2 were irradiated with u.v. light at various points in the infectious cycle. Following degradation of the DNA, nuclear proteins carrying cross-linked nucleotides, or oligonucleotides, were distinguished from virion phosphoproteins by the resistance of their 32P radioactivity to 1 M NaOH. The major core protein of the virion, protein VII, was found to be associated with viral DNA throughout infection, even when cells were infected at a multiplicity of 0.14. Micrococcal nuclease digestion of intranuclear viral DNA 4 h after infection liberated two nucleoprotein particles containing viral DNA, neither of which co-migrated with HeLa cell mononucleosomes. These results indicate that core protein VII remains associated with parental adenoviral DNA during productive infections. The observation that protein VII can be cross-linked to DNA in cells infected at very low multiplicity, together with the results of a comparison of proteins cross-linkable to viral DNA in cells infected by wild-type virus and a non-infectious mutant containing the precursor to protein VII, suggest that nucleoproteins comprising viral DNA and protein VII must be the templates for expression of pre-early and early viral genes.  相似文献   

15.
At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication.  相似文献   

16.
Using DNA blot analysis, we monitored the course of polyomavirus infection in mice receiving an intranasal inoculation and compared this with the course of infection in mice receiving an intraperitoneal inoculation. Intranasal infection was characterized by an initial primary replication phase in the respiratory tract, followed by a systemic infection of the visceral organs. At 12 days postinfection, there was partial clearing of viral DNA in all organs; by 22 days postinfection, viral DNA persisted only in the lungs and kidneys, and the level of DNA slowly decreased during the next 3 months. Lungs have been a previously unrecognized site for polyomavirus persistent infection. In contrast to intranasal infection, intraperitoneal infection of mice was characterized by only three phases: an initial systemic phase in which viral DNA was found in the same respiratory and visceral organs as during intranasal infection, clearing of the virus from the organs, and ultimately, a persistent infection in the kidneys but not in the lungs. Thus, different organs became persistently infected when mice were inoculated via these different routes.  相似文献   

17.
18.
Cloning of the human cytomegalovirus genome as endonuclease XbaI fragments   总被引:41,自引:0,他引:41  
D R Thomsen  M F Stinski 《Gene》1981,16(1-3):207-216
Restriction enzyme XbaI DNA fragments that represent 99% of the sequences from the long and short unique as well as the repeat sequences of the human cytomegalovirus (CMV) genome have been cloned into bacterial plasmid pACYC184. The viral DNA sequences associated with the recombinant plasmids were analyzed by restriction mapping and by hybridization to fragments of authentic viral DNA. The relationship of the cloned viral DNA fragments to the XbaI physical map of the viral genome is demonstrated. Even though large recombinant plasmids ranging from approx. 39 to 1.8 kb were isolated, most if not all of the viral DNA fragments were stable during propagation in Escherichia coli HB101.  相似文献   

19.
Changes in the location and structural organization of parental herpes simplex virus type 1 (HSV-1) DNA during its migration from the extracellular space to the interior of the nucleus of the target cell were examined by in situ hybridization using an HSV-1 DNA probe, specific DNA staining, and autoradiography after infection of cells with tritium-labeled viruses. In situ hybridization was carried out on denatured DNA to reveal as much as possible of the HSV-1 sequence present at the surface of the sections, and also on non-denatured DNA which revealed the presence of single-stranded portions of parental DNA, both prior to and during its intracellular migration. The results from in situ hybridization and autoradiography demonstrated that a short interval of about 15 min separated the initial contact of the viruses with the cells from the entry of parental viral DNA into the nucleus. In transit, morphologically intact nucleoids were released into the cytoplasm, and swollen nucleoids which contained partially decondensed viral DNA became detectable in the juxtanuclear cytoplasm and the periphery of the nucleus among the cell chromatin fibers. Completely decondensed parental viral DNA fibers could not be distinguished structurally from cellular DNA, but their position could be revealed by the in situ hybridization label. The infective DNA became randomly distributed within all compartments of the nucleus except the matrix-associated clusters of interchromatin granules.  相似文献   

20.
The infection of permissive monkey kidney cells (CV-1) with simian virus 40 induces G1 growth-arrested cells into the cell cycle. After completion of the first S phase and movement into G2, mitosis was blocked and the cells entered another DNA synthesis cycle (second S phase). Growth-arrested CV-1 cells replicated significant amounts of viral DNA in the G2 phase with the majority of synthesis occurring during the second S phase. When mimosine-blocked (G1/S) infected cells were released into the cell cycle, a major portion of the viral DNA was detected in G2 with the largest accumulation in the second S phase. The total DNA produced per infected cell was 10-12C with approximately 0.5-2C of viral DNA replicated per cell. Therefore the majority of the DNA per cell was cellular, 4C from the first S phase and approximately 4-6C from the second cellular synthesis phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号