首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the control of Sphaerotheca pannosa var. rosae on rose Tolylfluanide + tebuconazole (Folicur Multi 50 WG at concentration 0.1%) was used for spray 2 -times at 14-day-intervals or 4-times at 7-day-intervals. After 4 weeks of plants protection effectiveness of tested product was about 75%. In the control of Diplocarpon rosae, the product was applied when first disease symptoms appeared on rose shrubs. Application was repeated 5-times at 14-day-intervals or 9-times at 7-day-intervals. After 9 week-protection effectiveness of tested product was about 85% and depended on frequency of sprayings. In the control of Puccinia horiana on chrysanthemum, Tolylfluanide + tebuconazole was used as plant spray twice at 14-day-intervals or 4-times at 7-day-intervals. After 4 week-protection the product suppressed of new telia formation about 55%. Application of the product for willow rust (Melampsora epitea) control suppressed formation of new uredia about 86% and half of them were dried. In the control of pelargonium rust (Puccinia pelargonii-zonalis) the product was used as plant spray 4-times at 7-day-intervals. It suppressed formation of new uredia about 90% and 1/3 of them were dried. It was found that 1 or 7 days after rose spray, spores of D. rosae collected from leaf blades only in 6% germinated. Spores taken from nonspraying leaves germinated in 90%. In case of P. pelargonii-zonalis, after 1 or 7 days after spraying, spores collected from protected plants germinated at 3%, compared to 90% on untreated plants. Spores of B. cinerea, collected from protected plants germinated at about 10%, whereas on control leaves at 90%.  相似文献   

2.
Willow trees cv. Iwa growing in open field conditions in the sandy soil and naturally infected with Melampsora epitea were used. Effectiveness of paraffin oil (Atpolan 80 EC) and plant oils (Olejan 85 EC, rape and sunflower) in the control of pathogen was evaluated. When first uredinia were seen on the lower leaf surface, plants were sprayed 2-times at 7-day intervals with tested compounds at concentration from 0.25 to 2%. Also Surfactant Tergitol (TM) 15-S-9 at conc. 0.3% was added to plant oil suspension. After 2 sprayings a number of uredinia per leaf and number of browned and destroyed uredinia were counted. In the first trial Atpolan 80 EC suppressed uredinia formation about 2-4-times whereas rape or sunflower oil about 1.8 to 3-times. Additionally about 11 to 30% of uredinia were dried. In the next trials effectiveness of tested oils was higher than in previous experiment. After 2-weeks of willow trees protection with Atpolan 80 EC formation of uredinia was inhibited from 7 to 17-times, whereas Olejan 85 EC suppressed their production about 4 to 14-times. Additionally about 9-62% (Atpolan 80 EC) or 10-25% (Olejan 85 EC) of uredinia were browned and dried depend on used concentration. In the third experiment after 2-week-protection of plants with Atpolan 80 EC inhibition of uredinia formation varied from 6 to 10-times. In the case of Olejan 85 EC about 2 to 10-times less uredinia were observed on protected plants than on control, untreated leaf blades. About 48-72% (Atpolan 80 EC) or 17-61% (Olejan 85 EC) of uredinia were dried.  相似文献   

3.
Smith JA  Blanchette RA  Newcombe G 《Mycologia》2004,96(6):1330-1338
Current taxonomy places all rust fungi that occur on willow (Salix spp.) in North America in one species complex, Melampsora epitea Thüm. Characteristics of M. epitea isolates from the Canadian arctic were compared to M. epitea isolates from temperate regions of North America. Sequences from internal transcribed spacer (ITS) regions of rDNA were obtained from urediniospores from rust-infected Salix leaves collected in the Canadian arctic and in Minnesota and compared. Phylogenetic analysis of nuclear ribosomal ITS regions indicated that arctic M. epitea samples were divergent from temperate M. epitea isolates, perhaps in part because all rusts examined diverged according to host species. Four urediniospore characteristics were examined: area, circularity (shape factor), major axis length and spine density. Statistically significant (P < 0.05) differences were observed for spine density among all host species except S. nigra and S. bebbiana. However major axis length differed between these species. These results represent the first evidence that arctic and temperate Melampsora species on Salix hosts in North America have evolved distinct molecular and morphological characters.  相似文献   

4.
The aim of two year investigation was the valuation the effect of biopreparate Polyversum (B.A.S. Pythium oligandrum) and preparate Biochikol 020 PC (B.A.S. chitosan) used in control of potato against Phytophthora blight on the tuber infestation during storage by Helminthosporium solani and tuber infestation by sclerotia of Rhizoctonia solani. As the standard fungicide Vitavax 200 FS (B.A.S. karboxin and thiuram) was used. After harvesting 100 tubers from each plots was collected and put in storage. The analysis of tuber infestation by Rhizoctonia solani and Helminthosporium solani was made after harvesting (September) and later every 3 months during storage period (December, March). The percent of diseased tubers in tested sample and also infestation degree of bulbs using 5-degree scale was estimated. The received results of investigations ascertained, that all tested preparations during potato vegetation influenced on lower (in comparison with control) degree of bulbs infestation by sclerots of Rhizoctonia solani and the mean degree of infestation by Helminthosporium solani. Moreover the percent of diseased tubers infected by pathogens with tested preparations combination was significant lower than in control.  相似文献   

5.
Field experiments were carried out in the years 2005 and 2006 on carrot cv. 'Koral' and 'Perfekcja', and parsley cv. 'Berlinska' and 'Cukrowa'. Effectiveness of substances: Biochikol 020 PC (biologically active substances BAS--chitosan 20 g/dm3), Bioczos BR (extract of garlic 10 g/1 brick) and Biosept 33 SL (extract of grapefruit 33%) on seedling roots of carrot and parsley was studied. As the standard fungicide Zaprawa Funaben T (carbendazim 20% + tiuram 45%) was used. Roots of carrot and parsley were treated one of tested substances spring immediately before planting seedling roots. During vegetation period the growth of seedling shoots and setting of seeds, and their infestation by fungal and bacterial pathogens was noticed. Among substances used for spring dressing of carrot and also parsley seedling roots, the best efficacy exhibited Zaprawa Funaben T in both years of observation. The highest yield of carrot seeds had combination roots cv. 'Koral' and parsley seeds roots cvs 'Berlińska' and 'Cukrowa' dressed Zaprawa Funaben T. Effectiveness of biopreparates Biochikol and Biosept was lower in comparison with the standard fungicide, but their protective effect was significantly higher than in control. Bioczos had the lowest control efficacy.  相似文献   

6.
Chitosan was obtained from cuticles of the housefly (Musca domestica) larvae. Antibacterial activities of different Mw chitosans were examined against six bacteria. Antibacterial mechanisms of chitosan were investigated by measuring permeability of bacterial cell membranes and observing integrity of bacterial cells. Results show that the antibacterial activity of chitosan decreased with increase in Mw. Chitosan showed higher antibacterial activity at low pH. Ca2+ and Mg2+ could markedly reduce the antibacterial activity of chitosan. The minimum inhibitory concentrations of chitosans ranged from 0.03% - 0.25% and varied with the type of bacteria and Mw of chitosan. Chitosan could cause leakage of cell contents of the bacteria and disrupt the cell wall.  相似文献   

7.
During our investigation on microfungi in North Rhine Westphalia in the years 2002 and 2003 we were able to collect and identify some new and rare species of microfungi as parasites and saprophytes on wild and ornamental plants. Some of these like Erysiphe elevata (BURILL.) U. BRAUN & S. TAKAMATSU COMB. NOV. [=Microsphaera elevata BURILL.] on Catalpa bignonioides WALT., Erysiphe syringae-japonicae (U. BRAUN) U. BRAUN & S. TAKAMATSU [= Microsphaera syringae-japonicae U. BRAUN, M. aceris BUNKINA. KOMAROVSKIE CHTENIYA, Erysiphe acerina U. BRAUN & S. TAKAMATSU] on Acer campestre L. and Acer barinerve L., Mycosphaerella iridis (DESM.) SCHROET., Ectostroma iridis FR. and Volutella melaloma BERK. & BR on Iris pseudacorus L., Puccinia doronicella P. SYD. & SYD. on Doronicum columnae TEN., Ascochyta lamiorum SACC. S.L. I=A. phlomidis BUB. & WROB.) on Phlomis tuberosa L., Colletotrichum gloeosporides (PENZ.) SACC. on Passiflora coerulea L., Oidium hortensiae JOERST on Hydrangea macrophylla (THUNB.) SER., Puccinia horiana P. HENN. on Chrysanthemum vulgare (L.) BERNH., Lophodermium pinastri (SCHRAD.) CHEV., Leptostroma pinorum SACC., Sclerophoma pythiophila (CDA) HOHN., Lichenoconium boreale (KARST.) PETRAK. & SYD., Anthostomella formosa KIRSCHST. and Sphaeropsis sapinae (FR.) DYKO & SUTTON on Pinus nigra L. are new for Germany. All samples are located in the Herbarium ESS Mycotheca Parva, Collection G.B. Feige/N. Ale-Agha.  相似文献   

8.
Polycationic polymers have been noted for their effects in promoting cell adhesion to various surfaces, but previous studies have failed to describe a mechanism dealing with this type of adhesion. In the present study, three polycationic polymers (chitosan, poly-L-lysine, and lysozyme) were tested for their effects on microbial hydrophobicity, as determined by adhesion to hydrocarbon and polystyrene. Test strains (Escherichia coli, Candida albicans, and a nonhydrophobic mutant, MR-481, derived from Acinetobacter calcoaceticus RAG-1) were vortexed with hexadecane in the presence of the various polycations, and the extent of adhesion was measured turbidimetrically. Adhesion of all three test strains rose from near zero values to over 90% in the presence of low concentrations of chitosan (125 to 250 micrograms/ml). Adhesion occurred by adsorption of chitosan directly to the cell surface, since E. coli cells preincubated in the presence of the polymer were highly adherent, whereas hexadecane droplets pretreated with chitosan were subsequently unable to bind untreated cells. Inorganic cations (Na+, Mg2+) inhibited the chitosan-mediated adhesion of E. coli to hexadecane, presumably by interfering with the electrostatic interactions responsible for adsorption of the polymer to the bacterial surface. Chitosan similarly promoted E. coli adhesion to polystyrene at concentrations slightly higher than those which mediated adhesion to hexadecane. Poly-L-lysine also promoted microbial adhesion to hexadecane, although at concentrations somewhat higher than those observed for chitosan. In order to study the effect of the cationic protein lysozyme, adhesion was studied at 0 degree C (to prevent enzymatic activity), using n-octane as the test hydrocarbon. Adhesion of E. coli increased by 70% in the presence of 80 micrograms of lysozyme per ml. When the negatively charged carboxylate residues on the E. coli cell surface were substituted for positively charged ammonium groups, the resulting cells became highly hydrophobic, even in the absence of polycations. The observed "hydrophobicity" of the microbial cells in the presence of polycations is thus probably due to a loss of surface electronegativity. The data suggest that enhancement of hydrophobicity by polycationic polymers is a general phenomenon.  相似文献   

9.
AIMS: The objective of this study was to determine whether low concentrations of chitosan and benzoate in combination could be used to enhance the antimicrobial action of either compound alone against three spoilage yeasts in saline solutions. METHODS AND RESULTS: Saccharomyces exiguus, Saccharomycodes ludwigii and Torulaspora delbrueckii were suspended in 0.05 and 0.005% chitosan glutamate and 0.025% sodium benzoate, alone or in combination, in 0.9% saline solutions at pH 6.2 and 4.5. Survivor curves were constructed from viable counts determined periodically for up to 120 min. Chitosan at 0.005% almost doubled the extent of death caused by 0.025% benzoate alone, from about 1-2 log to about 2-4 log cfu ml(-1), depending on pH and target organism. CONCLUSIONS: Chitosan (0.005%) and 0.025% sodium benzoate acted synergistically against spoilage yeasts in saline solutions. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that the natural compound chitosan may be useful as an adjunct in the potentiation of the biocidal efficacy of antimicrobial compounds such as benzoates.  相似文献   

10.
Blackspot, caused by the Ascomycete fungus Diplocarpon rosae, is the most widespread and pernicious disease of cultivated roses. While some species of rose possess resistance to D. rosae, none of the modern-day rose cultivars are fully resistant to the pathogen. In the current study, Biolistic gene delivery was used to introduce a rice gene, encoding a basic (Class I), chitinase into embryogenic callus of the blackspot-susceptible rose (Rosa hybrida L.) cv. Glad Tidings. The plasmid used for transformation carried the neomycin phosphotransferase (nptII) gene facilitating the selection and regeneration of transgenic plants on medium containing 250 mg/l kanamycin. Southern analysis confirmed integration of 2–6 copies of the chitinase gene into the rose genome; gene expression was confirmed by enzyme assay. Bioassays demonstrated that expression of the chitinase transgene reduced the severity of blackspot development by 13–43%. This degree of resistance to the pathogen correlated with the level of chitinase expression in the transgenic rose plants. The introduction of disease defence genes into rose provides a method of producing blackspot-resistant rose cultivars sought by breeders and growers.  相似文献   

11.
Phytophthora ramorum was found in Poland in 2000 as the causal agent of rhododendron blight. Besides eradication of diseased plants and rhododendron growing around, chemical and biological control of the pathogen is necessary. In this study in vitro activity of grapefruit extract and chitosan in the inhibition of P. ramorum growth and sporulation and their efficacy in the control of leaf and stem rot development was evaluated. Amendment of V8 juice agar and soil leachate with grapefruit extract resulted in the inhibition of colony growth and sporulation of P. ramorum. Zoosporangia were more susceptible to the extract than pathogen hyphae and chlamydospores. Chitosan only slightly inhibited the colony growth and zoosporngia production. Spraying of rhododendron inoculated with P. ramorum with grapefruit extract at conc. 165 microg/cm3 inhibited 2-3 times the spread of necrosis on stems and leaves. Pre- and postinoculation spraying of rhododendrons with chitosan at conc. of 1000 microg/cm3 suppressed the disease spread about 40%.  相似文献   

12.
Chitosan is a promising biomaterial for biomedical applications and is currently applied as wound dressings. While chitosan solutions demonstrate strong bactericidal activity against a range of medically important bacteria, the study here reports a loss of this beneficial property in thin films cast from the same solutions. Chitosan films (20 μm) showed no inhibitory effects against Escherichia coli, Staphylococcus aureus or S. epidermidis species. In contrast, solutions used to prepare the films showed almost complete inhibition (~98 ± 2%) when tested on bacterial lawns and in liquid cultures. Increased acidity of the chitosan solutions (pH 5) was shown to promote the bactericidal effects of this biopolymer. The concept that devices fabricated from chitosan have an inherent antimicrobial activity is suggested as an important misconception.  相似文献   

13.
Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.  相似文献   

14.
Chitosan gallate were synthesized using a free radical-induced grafting reaction. Chitosan gallate showed enhanced water-solubility compared to plain chitosan, and exhibited good thermal stability. The IC50 value of chitosan gallate against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 17.86 μg/mL. In addition, chitosan gallate effectively inhibited the generation of intracellular reactive oxygen species (ROS), and also suppressed lipid peroxidation in RAW264.7 macrophage cells. Chitosan gallate also exhibited the protection effect on genomic DNA damage by induced hydroxyl radical, and up-regulated the protein expression of antioxidant enzymes including superoxide dismutase-1 and glutathione reductase under H2O2-mediated oxidative stress in RAW264.7 macrophage cells. These results indicate that chitosan gallate might be potential antioxidant biomaterials.  相似文献   

15.
Galactose dialdehyde: the forgotten candidate for a protein cross-linker?   总被引:31,自引:0,他引:31  
Chitosan derivatives with quaternary ammonium salt, such as N,N,N-trimethyl chitosan, N-N-propyl-N,N-dimethyl chitosan and N-furfuryl-N,N-dimethyl chitosan were prepared using different 96% deacetylated chitosan of M(v) 2.14x10(5), 1.9x10(4), 7.8x10(3). Amino groups on chitosan react with aldehydes to from a Schiff base intermediate. Quaternized chitosan were obtained by reaction of a Schiff base with methyl iodide. The yields, degree of quaternization and water-solubility of quaternized chitosan were influenced by the molecular weight of the chitosan sample. The antibacterial activities of quaternized chitosan against Escherichia coli were explored by calculation of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in water, 0.25 and 0.50% acetic acid medium. Results show the antibacterial activities of quaternized chitosan against E. coli is related to its molecular weight. Antibacterial activities of quaternized chitosan in acetic acid medium is stronger than that in water. Their antibacterial activities is increased as the concentration of acetic acid is increased. It was also found that the antibacterial activity of quaternized chitosan against E. coli is stronger than that of chitosan.  相似文献   

16.
Chitosan is an attractive preparation widely used as a pharmaceutical excipient. This study aimed to evaluate the antimicrobial activities of chitosan derivatives, EDTA, and the newly developed chitosan-EDTA combination against Gram-negative and Gram-positive bacteria as well as Candida albicans. Antimicrobial activity was studied. Both minimal Inhibitory Concentrations (MIC) and minimal biocidal concentrations (MBC) were determined. Chitosan acetic acid recorded lower MIC values against Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans than those exhibited by EDTA. EDTA failed to have inhibitory activity against Enterococcus faecalis as well as MBC against any of the studied microorganisms. Chitosan acetic acid's MBC were recorded to all examined species. Checkerboard assay results indicated a synergistic antimicrobial activity of the new combination against Staphylococcus aureus and an additive effect against other microorganisms. Moreover, a short microbial exposure to chitosan-EDTA (20-30 min) caused complete eradication. Due to the continuous emergence of resistant strains, there is an urgent need to discover new antimicrobial agents. Our findings suggest the use of chitosan as an enhancing agent with antibacterial and antifungal properties in combination with EDTA in pharmaceutical preparations.  相似文献   

17.
A new and practical laboratory approach to synthesize mannose modified chitosan (Man-chitosan) was developed via reductive amination reaction. Chitosan and mannose were used as raw materials. The reaction condition was mild and controllable. The overall yield was 47-52%. Each reaction products and Man-chitosan were characterized by (1)H NMR, ESI-MS, FT-IR and TGA spectrum. FT-IR and (1)H NMR results showed that mannose conjugated to chitosan via an alkane chain bridge (CH(2)CH(2)). The degree of substitution was calculated by element analysis. TGA results indicated that mannose grafted to chitosan slightly decreased the thermal stability of chitosan in some extent. MTT assay indicated that Man-chitosan was low cytotoxicity against HepG-2 and SMMC-7721 cells.  相似文献   

18.
We screened for immunoglobulin production stimulating factors (IPSFs) in polysaccharides using human-human hybridoma cells, HB4C5, cultured in serum-free medium. Among polysaccharides, citrus pectin, locust bean gum, and chitosan stimulated IgM production of HB4C5 cells. Especially chitosan showed the strongest IPSF activity; 100 ng/ml of chitosan stimulated IgM production approximately 5-fold. Chitosan had several characteristics as IPSF, as follows. 1) For the IPSF activity, 70-90% deacetylation was essential. 2) Chitosan oligomers (n = 5, 6, 7) and chitin oligomers (n = 5, 6, 7) showed no IPSF activities. 3) The IPSF activity of chitosan was inhibited by glucosamine, one of the constitutive sugars of chitosan. 4) Chitosan stimulated IgM production of human lymphocytes in serum-free culture, but not IgG or IgA, nor in serum-supplemented culture.  相似文献   

19.
Background:Emamectin benzoate (EMB) is a biopesticide which used in agriculture as an insecticide. It is easier to reach ecologically and affects human health. This study aims to evaluate the protective effect of chitosan and chitosan nanoparticles against EMB-induced hepatotoxicity.Methods:Male mice were distributed into four groups: G1: the negative control, G2: EMB group (5 mg/kg diet), G3: EMB with Chitosan, (600 mg/kg diet), and G4: EMB with Chitosan nanoparticles (600 mg/kg diet). The experiment continues for 8 weeks, and the animals were sacrificed, and their organs were removed and immediately weighed after sacrifice. The liver was quickly removed and processed for histopathological and genetic studies.Results:Emamectin benzoate (EMB) treatment induced oxidative stress by increased levels of Malondialdehyde (MDA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) with inhibition of acetylcholinesterase (AChE), Superoxide dismutase (SOD) and Catalase (CAT) levels. EMB produced several histopathological changes in the liver. Relative expressions of studied genes elevated in the liver with increase in DNA damage. Co-treatment with chitosan and chitosan nanoparticles reduced EMB related liver toxicity that belong to biochemical, histopathological, gene expression, and DNA damage by increasing antioxidant capacity.Conclusion:This study offers insight into the potential for Chitosan and chitosan nanoparticles as a novel natural material against the oxidative stress induced by EMB.Key Words: Chitosan Nanoparticles, DNA Fragmentation, Emamectin Benzoate, Gene Expression, Hepatotoxicity  相似文献   

20.
Preparation and antibacterial activity of chitosan nanoparticles   总被引:17,自引:0,他引:17  
Qi L  Xu Z  Jiang X  Hu C  Zou X 《Carbohydrate research》2004,339(16):2693-2700
Chitosan nanoparticles, such as those prepared in this study, may exhibit potential antibacterial activity as their unique character. The purpose of this study was to evaluate the in vitro antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against various microorganisms. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. Copper ions were adsorbed onto the chitosan nanoparticles mainly by ion-exchange resins and surface chelation to form copper-loaded nanoparticles. The physicochemical properties of the nanoparticles were determined by size and zeta potential analysis, atomic force microscopy (AFM), FTIR analysis, and XRD pattern. The antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against E. coli, S. choleraesuis, S. typhimurium, and S. aureus was evaluated by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results show that chitosan nanoparticles and copper-loaded nanoparticles could inhibit the growth of various bacteria tested. Their MIC values were less than 0.25 microg/mL, and the MBC values of nanoparticles reached 1 microg/mL. AFM revealed that the exposure of S. choleraesuis to the chitosan nanoparticles led to the disruption of cell membranes and the leakage of cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号