首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物细胞遗传图及其应用   总被引:1,自引:0,他引:1  
熊怀阳  赵丽娟  李立家 《遗传》2005,27(4):659-664
细胞遗传图(cytogenetic map)综合了来自遗传图(genetic map)和细胞学图(cytological map)两方面的信息,它既能反映基因或DNA标记之间在染色体上的真实距离,又能显示它们与染色体的细胞学结构间确切的位置关系。构建植物细胞遗传图的宗旨是将遗传图上的诸多标记与其在染色体的具体位置联系起来。目前主要有两种方法用于细胞遗传图的构建。较广泛使用的一种方法是借助染色体断点来确定遗传标记在染色体上的位置,另一种方法是利用荧光原位杂交(FISH)直接把DNA序列定位到染色体上。此外,利用RN-cM图也可以把遗传标记定位于粗线期染色体。从细胞遗传图可以看出,染色体两臂的远端有较高的基因密度和重组频率。细胞遗传图在比较近缘植物基因组的同线性、揭示植物的进化关系、研究基因定位克隆等方面都有重要意义.  相似文献   

2.
Cytogenetic maps, as the name implies, incorporate data from genetic maps with actual cytological features of chromosomes such as centromeres, knobs and, recently, fluorescence in situ hybridization (FISH) signals. Integration of genetic and cytological maps has been accomplished primarily in two ways. The first general strategy is to create a chromosome breakpoint, then determine its cytological position using microscopy, and its position on the genetic map using genetic techniques. A second strategy is by the direct hybridization of genetically mapped sequences onto chromosomes by FISH. The aim of this review is to provide an overview of the state of this field in plants. We review the history and uses of cytogenetic maps, and discuss future directions based on what we have learned. Electronic Publication  相似文献   

3.
The legume genus, Lupinus, has many notable properties that make it interesting from a scientific perspective, including its basal position in the evolution of Papilionoid legumes. As the most economically important legume species, L. angustifolius L. (narrow-leafed lupin) has been subjected to much genetic analysis including linkage mapping and genomic library development. Cytogenetic analysis has been hindered by the large number of small morphologically uniform chromosomes (2n = 40). Here, we present a significant advance: the development of chromosome-specific cytogenetic markers and assignment of the first genetic linkage groups (LGs) to chromosomal maps of L. angustifolius using the bacterial artificial chromosome (BAC)-fluorescence in situ hybridization approach. Twelve clones produced single-locus signals that "landed" on 7 different chromosomes. Based on BAC-end sequences of those clones, genetic markers were generated. Eight clones localized on 3 chromosomes, allowed these chromosomes to be assigned to 3 LGs. An additional single-locus clone may be useful to combine an unassigned group (Cluster-2) with main LGs. This work provides a strong foundation for future identification of all chromosomes with specific markers and for complete integration of narrow-leafed lupin LGs. This resource will greatly facilitate the chromosome assignment and ordering of sequence contigs in sequencing the L. angustifolius genome.  相似文献   

4.
Cytogenetic maps are useful tools for several applications, such as the physical anchoring of linkage and RH maps or genome sequence contigs to specific chromosome regions or the analysis of chromosome rearrangements. Recently, a detailed RH map was reported in OAR1. In the present study, we selected 38 markers equally distributed in this RH map for identification of ovine genomic DNA clones within the ovine BAC library CHORI-243 using the virtual sheep genome browser and performed FISH mapping for both comparison of OAR1 and homoeologous chromosomes BBU1q-BBU6 and BTA1-BTA3 and considerably extending the cytogenetic maps of the involved species-specific chromosomes. Comparison of the resulting maps with human-identified homology with HSA2q, HSA3, HSA21 and HSA1q reveals complex chromosome rearrangements differentiating human and bovid chromosomes. In addition, we identified 2 new small human segments from HSA2q and HSA3q conserved in the telomeric regions of OAR1p and homoeologous chromosome regions of BTA3 and BBU6, and OAR1q, respectively. Evaluation of the present OAR1 cytogenetic map and the OAR1 RH map supports previous RH assignments with 2 main exceptions. The 2 loci BMS4011 and CL638002 occupy inverted positions in these 2 maps.  相似文献   

5.
Cytogenetic analysis of brook trout performed with molecular and conventional methods led to identification of interstitial telomeric sites on one or two subtelocentric chromosomes within the same pair. Morphology and specific patterns of these chromosomes using fluorochromes associated with A/T- or G/C-rich DNA proved that these chromosomes are not sex related. The chromomycin-positive region was located on the short arms of the ITS bearing chromosome pair and flanked by telomeric sequences, suggesting that this part of the chromosome had been translocated from another one. Our observations confirm that GC-rich regions are highly mobile genetic structures, and led to ITS formation on brook trout chromosomes.  相似文献   

6.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

7.
Cytogenetic and molecular tools play an increasingly important role in plant genome research. A number of interesting applications that involve chromosome painting, the relationship between specific chromosomes and specific linkage groups, the relationships between physical and genetic distances on linkage maps, and the isolation of genes of interest, have been the subjects of recently published research. The aim of this paper is to review the different techniques available for chromosome microdissection and microcloning, and their use for the study of plant genomes. The quality of chromosomal DNA obtained is considered, and some recent results from our laboratory are presented.  相似文献   

8.
A sterile male with 45,X0 and a Y;22 translocation   总被引:1,自引:1,他引:0  
Summary Cytogenetic analysis of a 20-year-old sterile male revealed a 45,X0 karyotype with no evidence for Y-chromosomal material on any of the chromosomes analysed by Q-, G- and C-banding. DNA analysis with 17 different Y chromosome-derived probes revealed the presence of Yp DNA sequences in the patient's genome. In situ hybridization with the Yp-derived probe pJA36B disclosed a translocation of Y-chromosomal material onto the short arm of a chromosome 22.  相似文献   

9.
Summary Complementation maps of the seven male fertility factors in the Y chromosome of D. melanogaster have been constructed and are linearly consistent in all cases. These observations are further evidence that genetic loci in heterochromatic chromosomes share many characteristics with loci in euchromatic regions of chromosomes. These functional maps are consistent with the hypothesis that the genetic material of the male fertility factors in the Y chromosome is made up of single-copy sequences which become amplified in the primary spermatocyte.  相似文献   

10.
Homology of Balbiani Ring DNA in two closely related Chironomus species   总被引:1,自引:1,他引:0  
Cytogenetic analysis indicates that Balbiani Ring 2 (BR 2) in the two sibling species Chironomus tentans and Chironomus pallidivittatus arises from identifically banded segments in the salivary gland polytene chromosomes, although chromosomal rearrangements have occurred. In situ hybridization of BR 2 RNA to the polytene chromosomes of each individual species, as well as their F1 hybrids, reveals that the repetitious BR 2 DNA in the two species has, within the limits of the technique, retained identity of nucleotide sequences and degree of repetition. The DNA of the naturally expressed BR 1 and BR 3 in both species and that ot the galactose induced BR 6 in C. pallidivittatus did not hybridize with BR 2 RNA, indicating that these BR's are different from BR 2 with regard to sequence content.  相似文献   

11.
Cytogenetic heteromorphisms are described as heritable variations at specific chromosomal regions without phenotypic effect. Polymorphisms of the size of heterochromatic centromeric regions of chromosomes 1, 9 and 16 have been well documented in humans but only four previous reports described centromeric polymorphism of chromosome 6. We present a prenatal diagnosis of a rare de novo centromeric chromosome 6 variant. Cytogenetic and molecular techniques were used to characterize this variant and confirm the de novo nature of this event. This case illustrates the importance of reporting unusual variant chromosomes for genetic counseling and for determination of the frequency of variant chromosomes in the general population.  相似文献   

12.
Physical maps and recombination frequency of six rice chromosomes   总被引:2,自引:0,他引:2  
We constructed physical maps of rice chromosomes 1, 2, and 6-9 with P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) clones. These maps, with only 20 gaps, cover more than 97% of the predicted length of the six chromosomes. We submitted a total of 193 Mbp of non-overlapping sequences to public databases. We analyzed the DNA sequences of 1316 genetic markers and six centromere-specific repeats to facilitate characterization of chromosomal recombination frequency and of the genomic composition and structure of the centromeric regions. We found marked changes in the relative recombination rate along the length of each chromosome. Chromosomal recombination at the centromere core and surrounding regions on the six chromosomes was completely suppressed. These regions have a total physical length of about 23 Mbp, corresponding to 11.4% of the entire size of the six chromosomes. Chromosome 6 has the longest quiescent region, with about 5.6 Mbp, followed by chromosome 8, with quiescent region about half this size. Repetitive sequences accounted for at least 40% of the total genomic sequence on the partly sequenced centromeric region of chromosome 1. Rice CentO satellite DNA is arrayed in clusters and is closely associated with the presence of Centromeric Retrotransposon of Rice (CRR)- and RIce RetroElement 7 (RIRE7)-like retroelement sequences. We also detected relatively small coldspot regions outside the centromeric region; their repetitive content and gene density were similar to those of regions with normal recombination rates. Sequence analysis of these regions suggests that either the amount or the organization patterns of repetitive sequences may play a role in the inactivation of recombination.  相似文献   

13.
We describe a 17-month-old infant with clinical features of Down syndrome and a normal karyotype by standard chromosomal analysis, her two uncles aged 28 and 30 years, respectively, with reduced intelligence and unusual appearance but not apparent Down syndrome, and a severely retarded 6-year-old girl with dysmorphy and epilepsy from the same family. Cytogenetic studies of patients and normal intervening relatives had been carried out at different institutions with normal results. Fluorescence in situ hybridization using whole chromosome painting and unique-copy probes (cosmids) and high-resolution banding revealed a familial subtelomeric translocation of chromosomes 18 and 21, resulting in partial trisomy 21 in the infant and her two uncles, and partial monosomy 21 in the 6-year-old girl. Cytogenetic breakpoints were located in bands 18q23 and 21q22.1, respectively. The molecular breakpoint on chromosome 21 was located between D21S211 (proximal) and D21S1283 (distal) and thus maps within the Down syndrome critical region. Received: 11 November 1996 / Accepted: 29 April 1997  相似文献   

14.
Cytogenetic maps involving chromosomes 1R, 3R, 4R and 6R have been developed from the analysis of offspring of crosses between multiple heterozygous rye plants. The maps include isozyme loci GpiR1, Mdh-R1 and Pgd2 (located in chromosome 1R), Mdh-R2 (located in chromosome 3R), Pgm-R1 (located in chromosome 4R) and Aco-R1 (located in chromosome 6R). Various telomeric and interstitial C-bands of these four chromosomes, the centromere split of chromosome 3R, and translocation TR01 were used as cytological markers. By means of electron microscope analysis of spread pachytene synaptonemal complexes, the breakpoint of TR01 was physically mapped in chromosome arms 4RS and 6RL. From the linkage data, conclusions were derived concerning the cytological locations of the isozyme loci and the physical extent of the evolutive translocations involving chromosome arm 6RL.  相似文献   

15.
Genome mapping by means of radiation-induced interspecific cell hybrids is a direct means for localizing both high- and low-polymorphic nucleotide sequences, including gene sequences, on animal chromosomes. Using radiation hybrid panels either individual chromosomes and loci or the entire genome can be mapped. This is a novel efficient approach that allows one to reach high resolution of markers (up to 100 bp) and unify the mapping language. Due to electronic means of communication, the same experimental material can be used in numerous laboratories to provide high-resolution extended genomic maps saturated with markers. Radiation hybrid mapping is a powerful tool for the analysis of the complex genome structure. Using radiation hybrid maps permitted to verify regions of chromosome homeology in various species and to detect regions not only with conserved sequences but also with conserved gene order. Identification of these regions is extremely important for understanding evolution of species karyotypes. It permits the use of positional cloning to isolate genes controlling commercially valuable traits and those involved in the development of hereditary human diseases.  相似文献   

16.
Cytogenetic maps of sorghum chromosomes 3-7, 9, and 10 were constructed on the basis of the fluorescence in situ hybridization (FISH) of approximately 18-30 BAC probes mapped across each of these chromosomes. Distal regions of euchromatin and pericentromeric regions of heterochromatin were delimited for all 10 sorghum chromosomes and their DNA content quantified. Euchromatic DNA spans approximately 50% of the sorghum genome, ranging from approximately 60% of chromosome 1 (SBI-01) to approximately 33% of chromosome 7 (SBI-07). This portion of the sorghum genome is predicted to encode approximately 70% of the sorghum genes ( approximately 1 gene model/12.3 kbp), assuming that rice and sorghum encode a similar number of genes. Heterochromatin spans approximately 411 Mbp of the sorghum genome, a region characterized by a approximately 34-fold lower rate of recombination and approximately 3-fold lower gene density compared to euchromatic DNA. The sorghum and rice genomes exhibit a high degree of macrocolinearity; however, the sorghum genome is approximately 2-fold larger than the rice genome. The distal euchromatic regions of sorghum chromosomes 3-7 and 10 are approximately 1.8-fold larger overall and exhibit an approximately 1.5-fold lower average rate of recombination than the colinear regions of the homeologous rice chromosomes. By contrast, the pericentromeric heterochromatic regions of these chromosomes are on average approximately 3.6-fold larger in sorghum and recombination is suppressed approximately 15-fold compared to the colinear regions of rice chromosomes.  相似文献   

17.
Cytogenetic analysis of meningioma cells from one particular patient (MN32) displayed the stem-line karyo-type 45, XY, -1, 4p+, 22q-, 22q+, which thus had rearrangements of both chromosomes 22. The 22q+ marker appeared as a dicentric: 22 pter----q11::1p11----qter. The reciprocal product of this translocation has presumably been lost because it lacked a centromere. The 22q- chromosome also appeared to have lost sequences distal to band q11. We assumed that this marker could have been the result of a reciprocal translocation between chromosomes 4 and 22. To investigate the 4p+ and 22q- chromosomes in more detail, human-hamster somatic cell hybrids were constructed that segregated the 22q- and 4p+ chromosomes. Southern blot analysis with DNA from these hybrids showed that sequences from 22q were indeed translocated to 4p+ and that reciprocally sequences from 4p were translocated to 22q-, demonstrating a balanced t(4;22)(p16;q11). On the basis of these results we presume that in this tumor a tumor-suppressor gene is deleted in the case of the 22q+ marker and that the t(4;22) disrupts the second allele of this gene. The latter translocation was mapped between D22S1 and D22S15, a distance of 1 cM on the linkage map of this chromosome. The area in which we have located the translocation is within the region where the gene predisposing to neurofibromatosis 2 has been mapped.  相似文献   

18.
Zhdanova NS 《Genetika》2002,38(5):581-594
Genome mapping by means of radiation-induced interspecific cell hybrids is a direct way to localize both high- and low-polymorphic nucleotide sequences, including gene sequences, on animal chromosomes. Using radiation hybrid panels either individual chromosomes and loci or entire genome can be mapped. This efficient approach makes it possible to reach high resolution of markers (up to 100 bp) as well as unify the mapping language. Due to electronic means of communication, the same experimental material can be used in numerous laboratories to provide high-resolution extended genomic maps saturated with markers. Radiation hybrid mapping is a powerful tool for analysis of complex genome structure. Using radiation hybrid maps permitted verification of regions of chromosome homeology in various species and detection of regions with conserved sequence and conserved gene order. Identification of these regions is extremely important for understanding evolution of species karyotypes and for making use of positional cloning to isolate genes responsible for commercial traits as well as genes involved in hereditary human diseases.  相似文献   

19.
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA(3) ) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO (3) staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.  相似文献   

20.
The mammalian pseudoautosomal region   总被引:22,自引:0,他引:22  
Despite being morphologically dissimilar, mammalian sex chromosomes pair in male meiosis. Molecular studies of the X and Y chromosomes in humans and mice have identified the pseudoautosomal region, a genetically unique region of shared, recombining sequences that fall within the meiotic pairing region. Complete meiotic and physical maps of the human pseudoautosomal region have been produced and the pseudoautosomal boundary has been cloned and sequenced. These studies have provided clues to mammalian sex chromosome function and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号