首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The co-occurrence of apomixis (asexual reproduction) and polyploidy in plants has been the subject of debate in regard to the origin and evolution of asexuality. In recent years, polyploidy has been postulated as a maintenance and stabilization factor rather than as a source of apomixis origin. It is assumed polyploidy facilitates the compensation for mutation accumulation, and hence, the rare occurrence of diploid apomixis indirectly supports this finding. Nevertheless, diploid apomicts exist and are successful, especially in the genus Boechera. While comparing phenotypic traits, fitness-related traits and apomixis penetrance between both diploid and triploid apomicts in the genus Boechera, it was expected to find trait variance that can be attributed to ploidy. Surprisingly, little trait variation could be assigned to ploidy, but rather trait variations were mainly genotype-specific. Additionally, it is shown that paternal contribution is very important for trait success, even though all offspring are genetically identical to the mother plant. This harbors implications for the introduction of apomixis into crop plants, considering the effects of paternal contribution during asexual reproduction. Nevertheless, polyploidy is an efficient way to buffer deleterious mutations, but the flexibility of diploid apomicts of the genus Boechera for rare sexual events contributes to their success in nature.  相似文献   

2.
Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual Bstricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1‐BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes – the submetacentric Het′ and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.  相似文献   

3.
? Premise of the study: The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels (diploid and triploid). Apomixis is characterized by three components: unreduced embryo-sac formation (apomeiosis), fertilization-independent embryogenesis (parthenogenesis), and functional endosperm formation (pseudogamy or autonomous endosperm formation). Understanding the variation in these traits within and between species has been hindered by the laborious histological analyses required to analyze large numbers of samples. ? Methods: To quantify variability for the different components of apomictic seed development, we developed a high-throughput flow cytometric seed screen technique to measure embryo:endosperm ploidy in over 22000 single seeds derived from 71 accessions of diploid and triploid Boechera. ? Key results: Three interrelated features were identified within and among Boechera species: (1) variation for most traits associated with apomictic seed formation, (2) three levels of apomeiosis expression (low, high, obligate), and (3) correlations between apomeiosis and parthenogenesis/pseudogamy. ? Conclusions: The data presented here provide a framework for choosing specific genotypes for correlations with large "omics" data sets being collected for Boechera to study population structure, gene flow, and evolution of specific traits. We hypothesize that low levels of apomeiosis represent an ancestral condition of Boechera, whereas high apomeiosis levels may have been induced by global gene regulatory changes associated with hybridization.  相似文献   

4.
We performed a combined evolutionary analysis of North American Boechera stricta, Boechera holboellii, and their hybrid Boechera ×divaricarpa using information on ploidy level estimators, allelic microsatellite variation, noncoding regions of the plastidic genome (cpDNA), and sequences of the internal transcribed spacers 1 and 2 of the nuclear ribosomal DNA (ITS). Somatic ploidy levels of herbarium specimens were estimated based on comparison of pollen size and the number of alleles per locus at seven microsatellites. Results indicate that B. stricta and B. holboellii are genetically distinct from each other, although we also find evidence for occasional introgression between both parental species. Microsatellite patterns for B. stricta from northeastern North America are genetically distinct from western populations, suggesting isolation in glacial refugia along the southeastern margin of the continuous ice shield. Microsatellites supported recent origin of B. ×divaricarpa. Correspondence of nrDNA with cpDNA genetic variation for the majority of diploid B. holboellii accessions suggests a basal, sexual evolutionary unit within a polymorphic B. holboellii group. Hybridization of genetically distinct lineage(s) evidently played an important role in the establishment of polyploid B. holboellii. Frequency of polyploid B. holboellii is substantially higher in the southern United States. This trend corresponds to a southerly distribution of derived chloroplast haplotypes, suggesting an evolutionary advantage of polyploidy and associated apomixis in the colonization of the Sierra Nevada and the Southern Rocky Mountains.  相似文献   

5.
6.
Few studies have examined the potential for pathogens with complex life cycles to cause selection on their required alternate (=intermediate) hosts. Here we examine the effects of two fungal pathogens on an herbaceous mustard, Arabis holboellii. One pathogen species uses A. holboellii as a primary host, the other uses it as an alternate host. This plant-pathogen system is especially interesting because the host, A. holboellii, is apomictic; thus individuals reproduce exact copies of themselves. Despite this mode of reproduction, A. holboellii populations are surprisingly genetically diverse. Could frequency dependent selection by pathogens be maintaining clonal diversity? This study assesses the potential for selection by pathogens. In a controlled greehouse experiment we show that there is heritable variation in A. holboellii's resistance to the rust, Puccinia monoica, and that host fitness is severely reduced by P. monoica infection in both the greenhouse and under natural conditions. Field observations indicate that host clones are also differentially susceptible to the short-cycled rust, P. thlaspeos, and that host fitness is reduced by infection to this pathogen as well. Although the preconditions for pathogen-mediated selection are present, frequency-dependent selection by pathogens is unlikely to be important in structuring populations of Arabis holboellii because multiple host genotypes are susceptible to the same inoculum and the pathogen has a long generation time.  相似文献   

7.
8.
9.
In this review we look at the broad picture of how B chromosomes are distributed across a wide range of species. We review recent studies of the factors associated with the presence of Bs across species, and provide new analyses with updated data and additional variables. The major obstacle facing comparative studies of B chromosome distribution is variation among species in the intensity of cytogenetic study. Because Bs are, by definition, not present in all individuals of a species, they may often be overlooked in species that are rarely studied. We give examples of corrections for differences in study effort, and show that after a variety of such corrections, strong correlations remain. Several major biological factors are associated with the presence of B chromosomes. Among flowering plants, Bs are more likely to occur in outcrossing than in inbred species, and their presence is also positively correlated with genome size and negatively with chromosome number. They are no more frequent in polyploids than in diploids, nor in species with multiple ploidies. Among mammals, Bs are more likely to occur in species with karyotypes consisting of mostly acrocentric chromosomes. We find no evidence for an association with chromosome number or genome size in mammals, although the sample for genome size is small. The associations with breeding system and acrocentric chromosomes were both predicted in advance, but those with genome size and chromosome number were discovered empirically and we can offer only tentative explanations for the very strong associations we have uncovered. Our understanding of why B chromosomes are present in some species and absent in others is still in its infancy, and we suggest several potential avenues for future research.  相似文献   

10.
More than 1982 species in 90 genera were included in an analysis of the biogeography of the Phytoseiidae, a family of predatory mites. Seven biogeographic regions were taken into account: Nearctic, Neotropical, Ethiopian, West Palaearctic, East Palaearctic, Oriental, and Australasian. The number of species was particularly high in the Neotropical, Oriental, and West Palaearctic regions. These regions also present the highest levels of species endemism. The number of genera was quite similar in all regions except for the Neotropics, which also had a high level of endemism. The possible Gondwanian (Neotropical, Ethiopian, Australasian, and Oriental regions) origin of the Phytoseiidae, most probably in the Neotropics, and their possible radiation to Laurasia (Nearctic, West Palaearctic, and East Palaearctic regions) are discussed. The comparison between genera and species in the different biogeographic regions indicate the importance of both dispersal and vicariance events in the evolution of the group. Dispersal is assumed to have been most important between Neotropical and Nearctic regions and between East Palaearctic and Oriental regions, whereas vicariance could have been the dominating process between Australasian, Ethiopian, and Oriental regions, as well as between West and East Palaearctic regions. A parsimony analysis of endemicity showed the Neotropical and the Nearctic regions to be isolated from the other regions. This is certainly due to a diversification after the continents drifted apart and then a high dispersal between Nearctic and Neotropical regions. Different phylogenetic hypotheses and scenarios are proposed for each subfamily based on the results obtained and further investigations are proposed.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 845–856.  相似文献   

11.
12.
An electrophoretic survey of 81 populations of arctic Daphnia pulex from around the Svalbard archipelago revealed the presence of 49 unique allozyme clones ( N = 3357). Two closely related clones accounted for 66% of the total sample, and were widespread across the archipelago. Restriction fragment length polymorphisms (RFLPs) of a 2.1-kb fragment of mtDNA (NADH-4 and NADH-5 subunits), amplified using the polymerase chain reaction (PCR), revealed the presence of eight mtDNA haplotypes. One haplotype was particularly widespread, and the two most abundant allozyme clones shared this haplotype. Nonrandom distribution patterns of clones were observed, and are most likely the result of historical events (i.e. founder effects) related to the past glacial history of the archipelago. The data are discussed with reference to past glaciation events, and attempts are made to discern the colonization history of this apomictic complex.  相似文献   

13.
Deciphering species relationships and hybrid origins in polyploid agamic species complexes is notoriously difficult. In this study of cheilanthoid ferns, we demonstrate increased resolving power for clarifying the origins of polyploid lineages by integrating evidence from a diverse selection of biosystematic methods. The prevalence of polyploidy, hybridization, and apomixis in ferns suggests that these processes play a significant role in their evolution and diversification. Using a combination of systematic approaches, we investigated the origins of apomictic polyploids belonging to the Cheilanthes yavapensis complex. Spore studies allowed us to assess ploidy levels; plastid and nuclear DNA sequencing revealed evolutionary relationships and confirmed the putative progenitors (both maternal and paternal) of taxa of hybrid origin; enzyme electrophoretic evidence provided information on genome dosage in allopolyploids. We find here that the widespread apomictic triploid, Cheilanthes lindheimeri, is an autopolyploid derived from a rare, previously undetected sexual diploid. The apomictic triploid Cheilanthes wootonii is shown to be an interspecific hybrid between C. fendleri and C. lindheimeri, whereas the apomictic tetraploid C. yavapensis is comprised of two cryptic and geographically distinct lineages. We show that earlier morphology-based hypotheses of species relationships, while not altogether incorrect, only partially explain the complicated evolutionary history of these ferns.  相似文献   

14.
Additional or B chromosomes not belonging to the regular karyotype of a species are found in many animal and plant groups. They form a highly heterogeneous group with respect to their morphology and behaviour both in mitosis and meiosis. Achiasmatic mechanisms that ensure the segregation of a B chromosome from another B chromosome or from an A chromosome are reviewed. An achiasmatic mechanism characterized by the "distance pairing" of segregating univalents at metaphase I was found to be responsible for the preferential segregation of B chromosome univalents in Hemerobius marginatus L. (Neuroptera), and a mechanism characterized by the "touch and go pairing" of segregating univalents was responsible for the highly regular segregation of a B chromosome and the X chromosome in Rhinocola aceris (L.) (Psylloidea, Homoptera). The latter mechanism resulted in the integration of a B chromosome to the A chromosome set as a Y chromosome in a psyllid species Cacopsylla peregrina (Frst.). Furthermore, B chromosomes can disturb the regular segregation of the achiasmatic X and Y chromosomes resulting in the formation of X0/XY polymorphism in a population, which might precede the loss of the Y chromosome. The absence of observations on accurately functioning achiasmatic segregation mechanisms in grasshoppers (Orthoptera) was attributed to the X and B chromosomes, which re-orient one or several times during metaphase I. Apparently, these re-orientations mask any achiasmatic segregation mechanism that might operate during meiotic prophase in these insects.  相似文献   

15.
 In 17 populations of the tetraploid agamospecies R. variabilis, 10 enzyme systems have been studied by horizontal starch gel electrophoresis, and compared to previous data of 3 populations of the diploid sexual species R. notabilis. Allozymic and genotypic diversity of 12 polymorphic loci, and multilocus genotype diversity in R. variabilis compares to other apomictic taxa, confirming the assumed apomictic mode of reproduction previously found in 3 populations. A cluster analysis based on genetic distance values separated the two taxa, the populations of southeastern Austria sympatric with R. notabilis showing no closer relationships to the sexual species than the allopatric ones. The R. variabilis populations of the circumalpine regions are separated as a rather uniform group, those of the Bohemian massif as another, more heterogeneous group. This geographic differentiation is mainly due to genotypic variation, which is higher in the Bohemian massif than in the circumalpine group, and lower in areas where R. variabilis is sympatric with R. notabilis. Proportion of multilocus genotypes within populations (G/N), genotype diversity (D), and genotype evenness (E) measures indicate facultative recombination events with fixation and clonal reproduction of new recombined genotypes, which is regarded as the most important factor for the evolution of new lineages in goldilocks. Morphometric data of the R. variabilis and R. notabilis populations studied by cluster and principal coordinate analyses clearly separated the two taxa, and indicated a slight geographic differentiation with in R. variabilis corresponding to the results of isozyme data. A principal coordinate analysis of R. variabilis individuals based on stem and fruit characters showed a clinal variation, but no clear separation of groups. The variation found in this PCoA is almost completely covered from the most widespread clone (genotype I), and also from individual genotypes. The implications of the results on different species concepts for apomicts are discussed. For R. variabilis, no taxonomic conclusions can be drawn from the present data set. Received December 15, 1999 Accepted November 15, 2000  相似文献   

16.
N. Jones 《Plant biosystems》2013,147(3):727-737
Abstract

B chromosomes (Bs) can be described as “selfish chromosomes”, a term that has been used for the repetitive DNA which comprises the bulk of the genome in large genome species, except that Bs have a life of their own as independent chromosomes. They can accumulate in number by various processes of mitotic or meiotic drive, especially in the gametophyte phase of the life cycle of flowering plants. This parasitic property of drive ensures their survival and spread in natural populations, even against a gradient of harmful effects on the host plant phenotype. B chromosomes are inhabitants of the nucleus and they are subject to control by “genes” in the A chromosome (As) complement. This interaction with the As, together with the balance between drive and harmful effects makes a dynamic system in the life of a Bs. In this review, we concentrate mainly on recent developments in the Bs of rye and maize, two of the species currently receiving most attention. We focus on their population dynamics and on the molecular basis of their structural organisation and mechanisms of drive, as well as on their mode of origin and potential applications in plant biotechnology.  相似文献   

17.
B chromosomes in plants   总被引:8,自引:0,他引:8  
  相似文献   

18.
19.
20.
The reports in the literature agree that non-random distribution patterns do occur for the acrocentric human chromosomes in metaphase cell preparations, and it has been suggested that it is a property of acrocentric chromosomes that promotes these non-random patterns. Under this hypothesis, the telocentric chromosomes of the mouse should not show deviation from a random distribution within a cell. This possibility is examined using our data for several types of mouse cells and there is no indication of any significant clustering. However, certain translocations do appear to lead to significant non-random patterns. Alternate hypotheses are presented as possible explanations for this occurrence.This project was supported by: California State Department of Mental Hygiene; Mental Retardation Program, NPI, UCLA; MCH-927, Interdisciplinary Training in Mental Retardation; HD-04612, Mental Retardation Research Center, UCLA; HD-00345, Research Training in Mental Retardation; HD-05615, Developmental Biology in Mental Retardation, and Cancer Research Funds of the University of California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号