首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes active in developing wheat endosperm   总被引:3,自引:0,他引:3  
This paper describes the construction and characterisation of a cDNA library from wheat endosperm tissue during the early stages of grain filling. Developing wheat endosperm tissue was characterised with respect to standard measures including dry weight, cytological appearance and timing of expression of major sources of mRNA such as the seed storage protein genes. In addition, the full complement of proteins present at mid-endosperm development was examined using 2D-electrophoretic techniques. Based on this characterisation, endosperm from the developing grain 8–12 days post-anthesis was chosen for isolating mRNA and preparing cDNA. At this stage in development the mRNA population is not yet dominated by the accumulation of mRNA from seed storage protein genes. A cDNA library, not normalised, containing a high percentage of full length cDNA clones was constructed and 4,319 clones sequenced ("single-pass"). Partitioning of the cDNA sequences into gene families and singletons provided the basis for quantifying the accumulation of sequence classes relative to the total number of sequences determined. The accumulation of gene families/singletons was not linear. However, mathematical modeling of the data suggested that the maximum number of different genes expressed is within the range of 4,500–8,000 (detailed in the Appendix). If an average is taken of these extremes, approximately 27% of the gene products were visible as proteins in the 2D-electrophoretic analysis. Analysis of a functional class of genes relevant to wheat grain end-use, namely the glutenin/gliadin seed storage protein class of genes, revealed a new category of gene characterised by a distinctive N-terminal domain and a reduced central repetitive domain. Electronic Publication  相似文献   

2.
西瓜胚和胚乳的发育   总被引:1,自引:0,他引:1  
王秀玲  高新起  任秋萍 《广西植物》2002,22(5):437-T006
应用显微技术对西瓜胚和胚乳的发育过程进行了观察并分析了西瓜胚珠败育的原因。西瓜胚发育属紫菀型。合子第一次分裂为不均等分裂 ,形成的基细胞体积明显较顶细胞大 ,两细胞均含有多个液泡。原胚发育过程中没有明显的胚柄。最外层的原胚细胞 ,与胚乳细胞相邻的壁上被胼胝质物质包围 ,且无外连丝存在 ;与胚囊壁相接的壁上无壁内突结构。胚的子叶体积增长的同时 ,子叶细胞内积累蛋白质和脂类物质 ,多糖物质的含量下降。胚乳发育属核型 ,在球形胚期开始自珠孔端向合点端细胞化 ,胚子叶分化出后开始自珠孔端向合点端退化。胚乳合点端在球形胚早期形成发达的胚乳吸器 ,开始呈游离核状态 ,后细胞化 ,在心型胚期之后退化。  相似文献   

3.
The past few years have brought renewed interest in understanding the dynamics of chromosomes in interphase cells as well as during cell division, particularly meiosis. This research has been fueled by new imaging methods, particularly three-dimensional, high-resolution, and live microscopy. Major contributors are also new genetic tools that allow elucidation of mechanisms controlling chromosome behavior. Recent studies in plants have explored chromatin arrangement in interphase nuclei, chromosome interactions and movement during meiotic prophase I, and mechanisms that ensure correct segregation of chromosomes during anaphase. These studies shed light on chromosome dynamics in a small-genome plant Arabidopsis thaliana, as well as in plants with large and complex genomes of polyploid origin, such as wheat and maize.  相似文献   

4.
In the recent years, considerable advances have been made towards understanding the structure and function of the bacterial chromosome. A number of different factors appear to cooperate in condensing DNA into a highly dynamic assembly of supercoiled loops. Despite this variability in the lower levels of chromatin structure, the global arrangement of chromosomal DNA within the cell is surprisingly conserved, with loci being arrayed along the cellular long axis in line with their order on the genomic map. This conserved pattern is propagated during the course of DNA segregation. First, after entry into S-phase, the newly synthesized origin regions are segregated in an active and directed process, involving the bacterial actin homolog MreB. Subsequent DNA segments then follow by different mechanisms. They are separated immediately after release from the replisome and move rapidly to their conserved positions in the incipient daughter cell compartments. Partitioning of the bacterial chromosome thus takes place while DNA replication is in progress.  相似文献   

5.
6.
7.
Summary Total endosperm proteins extracted from both several common wheat cultivars and some intervarietal substitution lines derived from them were fractionated according to their molecular weight in a high resolution one-dimensional gel electrophoresis. The four donor cultivars and the recipient one — Chinese Spring, possessed differentially migrating protein bands in the fractions of high molecular weight (HMW) glutenins and gliadins. Several of these bands were identified for the first time in this study. By utilizing intervarietal substitution lines the control of the HMW glutenins and gliadins by chromosomes of homoeologous group 1 was either reaffirmed or, for the new bands, established. Several HMW gliadin subunits showed a considerable variation in their staining intensity in the intervarietal substitution lines indicating that their expression was dependent on the genetic background.This paper is based on a portion of a dissertation to be submitted by G. Galili in partial fulfilment of the Ph.D. requirements of the Feinberg Graduate School, The Weizmann Institute of Science, RehovotThe Marshall and Edith Korshak Professor of Plant Cytogenetics  相似文献   

8.
9.
10.
Precocious seed development is usually prevented by a series of mechanisms that ensure seed production results from double fertilization. These events are circumvented in natural apomictic plant species that reproduce clonally through seed. Recent advances in molecular genetics using mutagenic approaches in model sexual plant species, such as Arabidopsis and Zea mays, have revealed some of the mechanisms that prevent such precocious seed development. An understanding of these mechanisms may lead to the development of techniques that will allow future crop plant species exhibiting hybrid vigor to be engineered such that their complex genomes can be fixed indefinitely, thereby maintaining high yields. Our current understanding of the mechanisms underlying the processes of reproductive development is discussed in this review.  相似文献   

11.
12.
13.
The influence of chloral hydrate on endosperm cells of Haemanthus katherinae was studied. Four types of mitotic disturbances were described: a) Normal bipolar mitosis with one or few chromosomes lying out of the metaphase plate. Bipolar mitoses are sometimes arrested in anaphase and followed by the formation of a restitution nucleus. b) Tri — or multipolar anaphases. c) Diffuse anaphase movements i.e., active anaphase movements without distinct poles followed by the formation of multipolar phragmoplasts and cell walls. d) C-mitosis resembling the effect of colchicine. Some aspects of the described phenomena were discussed.  相似文献   

14.
Among the cereals, wheat is the most widely grown geographically and is part of the staple diet in much of the world. Understanding how the cereal endosperm develops and functions will help generate better tools to manipulate grain qualities important to end-users. We used a genomics approach to identify and characterize genes that are expressed in the wheat endosperm. We analyzed the 17,949 publicly available wheat endosperm EST sequences to identify genes involved in the biological processes that occur within this tissue. Clustering and assembly of the ESTs resulted in the identification of 6,187 tentative unique genes, 2,358 of which formed contigs and 3,829 remained as singletons. A BLAST similarity search against the NCBI non-redundant sequence database revealed abundant messages for storage proteins, putative defense proteins, and proteins involved in starch and sucrose metabolism. The level of abundance of the putatively identified genes reflects the physiology of the developing endosperm. Half of the identified genes have unknown functions. Approximately 61% of the endosperm ESTs has been tentatively mapped in the hexaploid wheat genome. Using microarrays for global RNA profiling, we identified endosperm genes that are specifically up regulated in the developing grain.  相似文献   

15.
《Molecular cell》2022,82(12):2350-2350.e1
  相似文献   

16.
A part of the big three cereal crops in the world, wheat has become a major constituent of the everyday food chain and is grown at a massive scale to meet global demands. This makes it an important crop from an economic as well as food security perspective. Selection of high-quality cultivars and consistent trait enhancement for such cultivars is crucial, and in light of new challenges from climate change, this has become an absolute necessity of time. In this regard, we conducted a detailed qualitative and quantitative trait analysis for multiple commercially viable varieties of wheat, and corresponding results were subjected to a series of critical statistical analyses. Final results have shown that five cultivars including Uqaab-2000, Faisalabad- 85, Anmol-19, NARC-2009, and Pirsabak-2004 depicts higher levels of various essential qualitative and quantitative traits (including Starch content, grain weight, RS content, Protein content, etc.) and are most viable varieties for further growth and trait enhancements to meet regional and global food challenges.  相似文献   

17.
Although maize endosperm undergoes programmed cell death during its development, it is not known whether this developmental feature is common to cereals or whether it arose inadvertently from the selection process that resulted in the enlarged endosperm of modern maize. Examination of wheat endosperm during its development revealed that this tissue undergoes a programmed cell death that shares features with the maize program but differs in some aspects of its execution. Cell death initiated and progressed stochastically in wheat endosperm in contrast to maize where cell death initiates within the upper central endosperm and expands outward. After a peak of ethylene production during early development, wheat endosperm DNA underwent internucleosomal fragmentation that was detectable from mid to late development. The developmental onset and progression of DNA degradation was regulated by the level of ethylene production and perception. These observations suggest that programmed cell death of the endosperm and regulation of this program by ethylene is not unique to maize but that differences in the execution of the program appear to exist among cereals.  相似文献   

18.
Chromosome structure and eukaryotic gene organization   总被引:1,自引:0,他引:1  
The DNA in the eukaryotic nucleus is highly compacted but well organized into distinct regional units. Chromosomal bands are characterized by their structure and distinctive replication time. They are subdivided into chromatin loops which serve as functional domains that have discrete boundary elements and can be regulated during development.  相似文献   

19.
Disproportionating enzyme or D-enzyme (EC 2.4.1.25) is an α-1,4 glucanotransferase which catalyses cleavage and transfer reactions involving α-1,4 linked glucans altering (disproportionating) the chain length distribution of pools of oligosaccharides. While D-enzyme has been well characterised in some plants, e.g. potato and Arabidopsis, very little is known about its abundance and function in cereals which constitute the major source of starch worldwide. To address this we have investigated D-enzyme in wheat (Triticum aestivum). Two putative D-enzyme cDNA clones have been isolated from tissue-specific cDNA libraries. TaDPE1-e, from an endosperm cDNA library, encodes a putative polypeptide of 575 amino acid residues including a predicted transit peptide of 41 amino acids. The second cDNA clone, TaDPE1-l, from an Aegilops taushii leaf cDNA library, encodes a putative polypeptide of 579 amino acids including a predicted transit peptide of 45 amino acids. The mature polypeptides TaDPE1-e and TaDPE1-l were calculated to be 59 and 60 kDa, respectively, and had 96% identity. The putative polypeptides had significant identity with deduced D-enzyme sequences from corn and rice, and all the expected conserved residues were present. Protein analysis revealed that D-enzyme is present in the amyloplast of developing endosperm and in the germinating seeds. D-enzyme was partially purified from wheat endosperm and shown to exhibit disproportionating activity in vitro by cleaving maltotriose to produce glucose as well as being able to use maltoheptaose as the donor for the addition of glucans to the outer chains of glycogen and amylopectin.  相似文献   

20.
华山新麦草胚和胚乳的发育研究   总被引:2,自引:2,他引:2  
王丽  赵桂仿 《西北植物学报》2002,22(4):T005-T006
采用常规石蜡切片法,观察了华山新麦草胚和胚乳的发育过程,结果表明,华山新麦草胚和胚乳的发育过程与一般禾本科植物基本相同,胚胎发生属紫宛型,顶细胞和基都参与胚体的形成,胚胎发育经过二细胞原胚,多细胞原胚,球形原胚,梨形原胚,分化胚和成熟胚阶段,成熟胚具有胚根,胚芽,盾片,胚牙鞘,胚根鞘,外胚叶等典型禾本科植物成熟胚的结构,胚乳发育类型为核型,包括游离核阶段,细胞化阶段和生长成熟阶段,待大量游离核形成之后才形成细胞壁,紧贴胚囊的一层胚乳细胞最后形成种子的糊粉层,其余的胚乳细胞最后充满淀粉粒,其特点为:(1)有双球形原胚的现象;(2)反足细胞解体较早;(3)胚乳游离核时期和细胞时期胚乳细胞核的核仁多样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号