首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungal pathogen Botrytis cinerea is the causal agent of grey mould, the most important fungal fruit rot disease in strawberry in Europe. Currently disease control for grey mould is based on preventive spraying every five to seven days during flowering and harvest. Replacing preventive spraying with applications based on infection warnings can optimize performance and reduce the amount of sprays needed. Success of this approach will depend on the accuracy of the model used to predict disease outbreak. For this reason three infection models (BOTEM, BoWaS, DSS-Italy) were evaluated during the growth seasons of 2003 and 2004. The experiments included June bearing, retarded June bearing and ever bearing strawberries. In all experiments the use of infection models leaded to a reduced number of fungicide applications. However the efficacy of the different models towards the control of B. cinerea also decreased compared to the efficacy obtained with a standard 7 day schedule. Best results were obtained with BOTEM, developed by HRI (Horticultural Research International, East-Malling, UK): 17-60% reduction in fungicide use and an efficacy between 66-93 depending on the growth season, culture practice and the fungicides used. Compared with routine preventive spraying, the Botrytis fruit rot percentage is slightly higher. A higher efficacy with Botrytis infection warnings can only be obtained if infection warnings change from curative to preventive. A retroactive evaluation of a preventive warning system was included. Making use of the 48h weather forecasts supplied by the Royal Meteorological Institute of Belgium (KMI) based on ALADIN for the region of Haspengouw, it was possible to replace 30 up to 100% of the curative application by preventive spraying depending on the experiment and the threshold set for the preventive model.  相似文献   

2.
PHILABUSTER is a new post-harvest fungicide developed by Janssen Pharmaceutica N.V.. It provides an advanced mould control by post-harvest treatments of citrus and pome fruit. The product is formulated as a stable suspension concentrate intended for dilution in water before use. PHILABUSTER 400 SC contains 200 g/L imazalil and 200 g/L pyrimethanil. Both active ingredients have a different single site mode of action. Imazalil inhibits ergosterol biosynthesis (DMI), whereas pyrimethanil interferes with fungal enzyme secretion and methionine biosynthesis. Due to the combination of these low risk fungicides a good anti-resistance management can be obtained. In case of existing reduced sensitivity of a population to DMI or MBC fungicides, no cross-resistance with pyrimethanil was observed. PHILABUSTER showed good activity by post-harvest treatment against key pathogens on apple and pear Penicillium expansum (blue mold), Botrytis cinerea (gray mold) and Gloeosporium spp. (lenticel rot) in small and large scale experiments with artificial or natural infections. By dip treatment of large volumes of fruit (up to 50 tons) the depletion of both active ingredients in the treatment water was low, both when plastic or wooden bins were used. Lower dose rates resulted in an inferior and inconsistent residue level of both active ingredients on fruit. Possible advantages of post-harvest treatments versus field treatments for the control of storage diseases are discussed.  相似文献   

3.
The introduction of site-specific fungicides almost 50 years ago has revolutionized chemical plant protection, providing highly efficient, low toxicity compounds for control of fungal diseases. However, it was soon discovered that plant pathogenic fungi can adapt to fungicide treatments by mutations leading to resistance and loss of fungicide efficacy. The grey mould fungus Botrytis cinerea, a major cause of pre- and post-harvest losses in fruit and vegetable production, is notorious as a ‘high risk’ organism for rapid resistance development. In this review, the mechanisms and the history of fungicide resistance in Botrytis are outlined. The introduction of new fungicide classes for grey mould control was always followed by the appearance of resistance in field populations. In addition to target site resistance, B. cinerea has also developed a resistance mechanism based on drug efflux transport. Excessive spraying programmes have resulted in the selection of multiresistant strains in several countries, in particular in strawberry fields. The rapid erosion of fungicide activity against these strains represents a major challenge for the future of fungicides against Botrytis. To maintain adequate protection of intensive cultures against grey mould, strict implementation of resistance management measures are required as well as alternative strategies with non-chemical products.  相似文献   

4.
Smoulder, caused by Botrytis narcissicola, is the most widespread foliar disease of narcissus (Narcissus cultivars) in the UK and causes significant losses in bulb and flower yield. A range of current and novel fungicide treatments was examined to determine if control of the disease could be improved and to measure the effect of treatments on bulb yield. In assays on pot-grown plants, carbendazim+flusilazole, epoxiconazole, iprodione + thiophanate-methyl, tebuconazole and vinclozolin reduced lesion size by more than 90%, compared with untreated plants, when applied 1 day before inoculation with the fungus; vinclozolin and tebuconazole were also effective when applied 2 days after inoculation. In field experiments in Cambridgeshire and Lincolnshire, significant reductions were observed in secondary smoulder symptoms (leaf lesions and stem rot) following fungicide sprays. Spray programmes of the novel fungicides azoxystrobin, cyprodinil, kresoxim-methyl, tebuconazole and pyrimethanil were as effective, or more so, than the standard treatments (chlorothalonil, vinclozolin) used by growers. Mixtures of carbendazim + tebuconazole and azoxystrobin + tebuconazole also gave effective control of smoulder. Programmes of four to six sprays, using two or three fungicides with different modes of action, applied alternately, reduced smoulder by 35–69% and increased bulb yields by 7–59%. Although treatment around and after flowering resulted in the greatest control of secondary smoulder, treatment before flowering was required for the highest bulb yields. The choice of fungicides for use in spray programmes to provide effective and reliable control of smoulder, and the possibility of control using fewer sprays, are discussed.  相似文献   

5.
During three years, the new fungicide Signum, containing 6.7% pyraclostrobine + 26.7 % boscalid and developed by BASF. has been evaluated in leek, carrots and cabbages in several outdoor field experiments under practical conditions and during one year in outdoor lettuce. In leek, Phytophthora porri is one of the major leaf diseases causing lesions on differ ent places on the leaves, resulting in at least extra labour costs for trimming or even worse sometimes resulting in complete crop loss. So far, crop protection consists of repeated applications of fungicides especially during autumn and winter. Pyraclostrobin + boscalid has been evaluated in comparison with the fungicides mancozeb, mancozeb + metalaxyl-M and azoxystrobin. The progress of the disease during the growth season is discussed. For all parameters evaluated, pyraclostrobin + boscalid gave comparable or even better results than reference products. Especially during 2003, a small drop of the activity of benalaxyl against P. porri has been observed after repeated applications. In carrots, Erisiphe heraclei and Alternaria dauci are both the most common leaf diseases causing yield and quality loss. During periods of very high pressure of A. dauci, pyraclostrobin + boscalid, applied in a three weeks interval, revealed a superior activity compared with triazole references or compared with azoxystrobin. Against E. heraclei, a good control but also a clear dose response activity have been observed with pyraclostrobin + boscalid. Yield gain was approximately 30 ton /ha compared wih untreated. In Brussels sprouts, good efficacy was obtained against Mycosphaerella spp., Albugo candida and Alternaria spp. In outdoor lettuce Botrytis cinerea and Sclerotinia sclerotiorum are the most important diseases causing crop damage and reducing the quality of the heads. Pyraclostrobin + boscalid was evaluated in comparison with the standard fungicide iprodione. The plant protection was better with the new fungicide pyraclostrobin + boscalid.  相似文献   

6.
In the 1972 season, Elvaron and Benlate reduced the count of Botrytis cinerea, Cladosporium spp., Penicillium spp. and Aureobasidiutn pullulans on strawberry and raspberry fruits during the first 2 wk of the season, but not subsequently. No such reduction was recorded for Hainesia lythri (strawberries only), Phoma state of Didymella applanata (raspberries only), Mucor spp., and Rhizopus spp. Similar results were obtained in 1973. In the first half of either season, both fungicides decreased the rate of fungal spoilage of stored fruit (except for Benlate in the 1973 season), although in the latter part of the season, there was little difference in the incidence of fungal spoilage between sprayed and unsprayed fruit. Both fungicides, however, reduced the development of B. cinerea (and Cladosporium spp. on raspberries) on stored fruit irrespective of season or harvest date except for Benlate in the 1973 season where Benlate-resistant strains of the fungi developed on the fruit. The failure of either fungicide to reduce fungal spoilage in the latter part of the harvesting season was due to the development of Phycomycetes, particularly Mucor mucedo and to a lesser extent Rhizopus stolonifer and R. sexualis, except where Benlate-resistant strains of B. cinerea and Cladosporium spp. were present.  相似文献   

7.
Phyllosticta ampelicida (teleomorph: Guignardia bidwellii) is the fungal plant pathogen that causes black rot on grapevine. It is able to infect all green, expanding grape tissues. Black rot poses a threat to both yield and wine quality; a severe attack can virtually cause a complete crop loss. The fungus is native to North America, and was spread to Europe at the end of the 19th century. With the beginning of the 21st century, an increasing importance of the disease was observed in several European winegrowing regions. Successful black rot control strategies combine sanitary measures, cultural techniques, growing cultivars with reduced susceptibility and the use of effective fungicides. Berries are most susceptible to infections between flowering and bunch closure and consequently, fungicide applications against black rot need to focus on this period. In this paper, forecast models and decision support systems that help to achieve satisfactory control with a minimum of fungicide input are presented. Black rot in grapevine was reported to be well controlled in field experiments by a broad range of fungicide classes including quinone outside inhibitors (98 ± 3% efficacy), demethylation inhibitors (98 ± 3% efficacy) and dithiocarbamates (92 ± 7% efficacy). Average efficacies of other fungicide classes tested so far ranged from 32 to 69%; meta data on the efficacy of fungicides in numerous field trials are given. At present, black rot causes major problems primarily if vineyard management and fungicide use were reduced or abandoned. Organically managed vineyards are highly affected. Hence, site and cultivar selection as well as cultural measures are of the highest importance especially in organic viticulture. Recent studies showed that some strains formerly classified as G. bidwellii in fact belong to a distinct species (P. parthenocissi). Black rot pathogens produce some phytotoxic secondary metabolites, such as phenguignardic acid, guignardic acid, alaguignardic acid and the guignardianones A, E and F, which could stimulate the development of new herbicides of natural origin.  相似文献   

8.

Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

  相似文献   

9.
Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.  相似文献   

10.
In fruit growing preharvest sprayings in the orchard are mainly applied to protect fruit from decaying. Next to multisite fungicides (captan, thiram, tolylfluanid) the most commonly used products recognized for the Belgium market are Bellis (pyraclostrobin & boscalid) and the combination of Topsin M (thiophanate-methyl) and Frugico (diethofencarb). In general the spraying schedule varies depending on weather conditions (infection risk), preharvest interval of available fungicides, fruitgrower and cultivar of pome fruit (apple/pear). Facing the climatological conditions before picking the residue loading on the fruit surface can differ enormously. Also wet (pre)grading is considered to decrease the product residue resulting to fruits which are less protected before entering the cold storage room. In this context a partially replacement of the preharvest treatments by one postharvest application could offer a reliable alternative to the PPP reduction program (Plant Protection Products) in the orchard. A standardized application method by dipping or drenching will cover the fruits homogenically resulting in a rationalized fungicide use compared to the preharvest sprayings in the orchard. For the Belgium market Philabuster (imazalil & pyrimethanil) is registered for postharvest treatments since for this product a proper solution for the waste water of postharvest uses was developed to protect surface waters (Funds technology). Philabuster provides an advanced mould control towards fruit rot pathogens Gloeosporium spp., Botrytis cinerea and Penicillium spp. In this context several trials were set up to evaluate the biological efficacy of Philabuster alone or in combination with preharvest sprayings in the orchard. In concrete different preharvest spraying schedules were applied in the last six weeks before harvest on apple and pear facing parameters as rational fungicide use, antifungal effectiveness and cost price. The purpose was to select the optimal combination in use of preharvest fungicides with Philabuster as postharvest treatment, which offer full protection towards all key pathogens in apple and pear.  相似文献   

11.
A laboratory technique is described for the production of drops of simulated rain in which fungal spores were suspended. When such drops containing conidia of Botrytis fabae impacted on a target leaf the secondary droplets produced infections on receptor broad bean leaves. The capacity of fungicides applied to the target leaf to redistribute in secondary splash droplets was examined in terms of the infectivity of the spores in the droplets. The extent to which a copper fungicide reduced infection on the receptor leaves was related to the level and tenacity of the fungicide deposit on the target leaf. The effect of wetting agents on the redistribution of this fungicide could probably be explained by their influence on the tenacity of the initial deposit. In general the capacity of different fungicides to inhibit infection by the secondary droplets was related to the inherent toxicity of the fungicides to B. fabae. Implications of the dispersal of spores and fungicides by rain splash are briefly considered with reference to field conditions.  相似文献   

12.
The impact of fungicide treatment on fungal infection and blackcurrant juice quality was examined in a series of field experiments over the course of 2 years. Fungicide treatment reduced the incidence of foliar disease and resulted in changes in the concentration of sugars, organic acids, polyphenols and anthocyanins in blackcurrant juice. Treatment with Signum® (containing pyraclostrobin, a strobilurin, and boscalid, a succinate dehydrogenase inhibitor) enhanced glucose, fructose and total sugar content in one treatment year but not in another. Treatment with Signum or Filan® (containing boscalid only) caused a reduction in the key organic acid citrate. Treatment with Signum or Platoon® (containing pyraclostrobin only) enhanced total polyphenol and anthocyanin content of juices. The data suggest a beneficial impact of fungicide treatment not only on disease control but also on juice phytochemistry.  相似文献   

13.
As an alternative to the use of synthetic chemical fungicides to control plant disease, aluminium‐containing salts were evaluated for their effects on the mycelial growth of various fungal or fungus‐like pathogens and their ability to control carrot cavity spot (Pythium sulcatum) and potato dry rot (Fusarium sambucinum). Results showed that various aluminium‐containing salts provided strong inhibition of all the tested pathogens (Alternaria solani, Botrytis cinerea, F. sambucinum, P. sulcatum and Rhizopus stolonifer) with minimal inhibitory concentration of 1–10 mM. Aluminium chloride and aluminium sulphate were generally the most effective, inhibiting mycelial growth of pathogens by as much as 47% and 100%, respectively, at a salt concentration of 1 mM. Applied at 5 mM, aluminium sulphate also provided 28% and 100% inhibition of dry rot and cavity spot, respectively. Aluminium chloride (5 mM) reduced dry rot by 25% whereas aluminium lactate (5 mM) decreased cavity spot lesions by 86%. These results indicate that various aluminium‐containing salts may provide an alternative to the use of synthetic fungicides to control these pathogens.  相似文献   

14.
Until recently, the majority of research on the biological control of aerial plant diseases was focused on control of bacterial pathogens. Such research led to the commercialization of the biocontrol agent Pseudomonas fluorescens A506, as BlightBan A506™, for control of fire blight of pear. In contrast, chemical fungicides typically have provided adequate control of most foliar fungal pathogens. However, fungicide resistance problems, concerns regarding pesticide residues and revocation of registration of certain widely used fungicides have led to increased activity in the development of biocontrol agents of foliar fungal pathogens. Much of this activity has centered around the use of Trichoderma spp and Gliocladium spp to control Botrytis cinerea on grape and strawberry. The biocontrol agent Trichoderma harzianum T39 is commercially available in Israel, as Trichodex ™, for control of grey mold in grapes and may soon be registered for use in the US. Also targeted primarily against a foliar disease of grapes, in this case powdery mildew caused by Uncinula necator, is the biocontrol agent Ampelomyces quisqualis AQ10, marketed as AQ10  TM biofungicide. Another promising development in the area of foliar disease control, though one which is not yet commercialized, is the use of rhizobacteria as seed treatments to induce systemic resistance in the host plant, a strategy which can protect the plant against a range of bacterial and fungal pathogens. Received 06 February 1997/ Accepted in revised form 05 June 1997  相似文献   

15.
Botrytis cinerea is an economically important fungal pathogen with a host range of over 200 plant species. Unfortunately, gray mold disease caused by B. cinerea has not been effectively controlled because of its high risk for fungicide resistance development. As a part of our ongoing efforts to develop novel sulfonamides as agricultural fungicides against Botrytis cinerea, we introduced 2-aminoethanesulfonic acid (taurine) substructure, designed and synthesized a series of novel 2-substituted acylaminoethylsulfonamides. The newly synthesized sulfonamides were evaluated in vitro and in vivo for their fungicidal activity against Botrytis cinerea, of which the 2-ethoxyacetylamide derivative (V-A-12, EC50 = 0.66 mg·L−1) exhibited the highest potency in vitro and superior fungicidal activity compared with procymidone (EC50 = 1.06 mg·L−1). In vivo bioassay indicated that compound V-A-12 could be effective for the control of tomato gray mold. Moreover, the structure-activity relationship of these sulfonamides was analyzed by establishing a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, which can provide guidance for the development of sulfonamides as fungicides. Finally, the effeicacy of sulfonamide derivatives was again verified in the activity evaluation against resistant Botrytis cinerea strains. These results further enhance the development value of 2-substituted acylaminoethylsulfonamides to control the tomato gray mold.  相似文献   

16.
Twenty (aryloxythio)trichloromethanes were examined for in vitro fungicidal activity against six fungi. All compounds showed a direct fungistatic effect and some exhibited a marked fumigant action. Good protectant action against Alternaria solani on tomato and Botrytis fabae on broad bean was obtained with certain compounds, but none was better than the three standard protectants used for comparison. When supplied to plants through their roots, eight conferred significant systemic fungicidal protection against Alternaria solani in tomato, but there was no significant protection against Botrytis fabae in broad bean. In preliminary tests the 2:4:5-trichlorophenoxythio analogue gave promising results when examined as a fumigant fungicide for eradication of downy mildew in lettuce plants, for reducing lenticel rot in stored apples and for preventing blue-mould in oranges.  相似文献   

17.
A biological control of crown rot disease of banana fruit was analysed using an integrated approach combining hot water treatment and Trichoderma harzianum strain DGA01. Treated fruits were stored at 22–25 °C and 90–95% relative humidity for 2 weeks. The bioefficacy of fungal antagonist in vitro towards crown rot-causing pathogens, namely Lasiodiplodia theobromae, Thielaviopsis paradoxa, Colletotrichum musae and Fusarium verticillioides, was enhanced by 11.41% following hot water treatment (50 °C, 20 min). DGA01 germinated on the fruit 48 h after inoculation and parasitised the pathogen. Postharvest application showed that hot water treatment and conidial suspension of DGA01 (106 ml?1) applied singly performed significantly better than the untreated control in reducing the incidence of crown rot, but were not as effective as the fungicide. The combination of hot water treatment and DGA01 gave 93% control of fruit decay which was comparable with fungicide treatment of 95%. The quality of fruit was markedly improved in hot water treatment + DGA01 as compared to those dipped in fungicide solution. The inconsistencies of single treatments, by DGA01 or hot water dips, in controlling crown rot such as variation in severity of disease among treatments and within a treatment, were lessened by dipping the fruit in DGA01 conidial suspension following hot water treatment.  相似文献   

18.
The new fungicides iprodione, vinclozolin and prochloraz, and also a mixture containing carbendazim and maneb, were compared with the established protectant fungicides dichlofluanid and chlorothalonil for effectiveness against grey mould ( Botrytis cinerea ) in an unheated tomato crop. Iprodione and vinclozolin gave the best control of lesions on leaves and stems but dichlofluanid was the most effective in controlling ghost-spotting of fruit. The carbendazim/maneb mixture was effective against a carbendazim-sensitive isolate but not against an insensitive isolate of B. cinerea . When applied 1 or 2 days after inoculation, all five protectant fungicides controlled the insensitive isolate better than the sensitive isolate.  相似文献   

19.
A strain of Streptomyces sp. (M10) antagonistic to Botrytis cinerea was isolated from orchard soil obtained from Jeju Island, Korea. An antifungal substance (CN1) was purified from the culture extracts of the strain, and then identified as valinomycin through extensive spectroscopic analyses. Valinomycin showed potent in vitro antifungal activity against Botrytis cinerea and also in vivo control efficacy against Botrytis blight development in cucumber plants. Overall, the disease control efficacy of valinomycin was similar to that of vinclozolin, a commercial fungicide. This study provides the first report on the disease control efficacy of valinomycin against Botrytis blight.  相似文献   

20.
During pathogenesis, fungal pathogens are exposed to a variety of fungitoxic compounds. This may be particularly relevant to Botrytis cinerea, a plant pathogen that has a broad host range and, consequently, is subjected to exposure to many plant defense compounds. In practice, the pathogen is controlled with fungicides belonging to different chemical groups. ATP-binding cassette (ABC) transporters might provide protection against plant defense compounds and fungicides by ATP-driven efflux mechanisms. To test this hypothesis, we cloned BcatrB, an ABC transporter-encoding gene from B. cinerea. This gene encodes a 1,439 amino acid protein with nucleotide binding fold (NBF) and transmembrane (TM) domains in a [NBF-TM6]2 topology. The amino acid sequence has 31 to 67% identity with ABC transporters from various fungi. The expression of BcatrB is up regulated by treatment of B. cinerea germlings with the grapevine phytoalexin resveratrol and the fungicide fenpiclonil. BcatrB replacement mutants are not affected in saprophytic growth on different media but are more sensitive to resveratrol and fenpiclonil than the parental isolate. Furthermore, virulence of deltaBcatrB mutants on grapevine leaves was slightly reduced. These results indicate that BcatrB is a determinant in sensitivity of B. cinerea to plant defense compounds and fungicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号