首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
Plant (Secale cereale, Triticum aestivum) and animal (Eyprepocnemis plorans) meiocytes were analyzed by indirect immunostaining with an antibody recognizing histone H3 phosphorylated at serine 10, to study the relationship between H3 phosphorylation and chromosome condensation at meiosis. To investigate whether the dynamics of histone H3 phosphorylation differs between chromosomes with a different mode of segregation, we included in this study mitotic cells and also meiotic cells of individuals forming bivalents plus three different types of univalents (A chromosomes, B chromosomes and X chromosome). During the first meiotic division, the H3 phosphorylation of the entire chromosomes initiates at the transition from leptotene to zygotene in rye and wheat, whereas in E. plorans it does so at diplotene. In all species analyzed H3 phosphorylation terminates toward interkinesis. The immunosignals at first meiotic division are identical in bivalents and univalents of A and B chromosomes, irrespective of their equational or reductional segregation at anaphase I. The grasshopper X chromosome, which always segregates reductionally, also shows the same pattern. Remarkable differences were found at second meiotic division between plant and animal material. In E. plorans H3 phosphorylation occurred all along the chromosomes, whereas in plants only the pericentromeric regions showed strong immunosignals from prophase II until telophase II. In addition, no immunolabeling was detectable on single chromatids resulting from equational segregation of plant A or B chromosome univalents during the preceding anaphase I. Simultaneous immunostaining with anti-tubulin and anti-phosphorylated H3 antibodies demonstrated that the kinetochores of all chromosomes interact with microtubules, even in the absence of detectable phosphorylated H3 immunosignals. The different pattern of H3 phosphorylation in plant and animal meiocytes suggests that this evolutionarily conserved post-translational chromatin modification might be involved in different roles in both types of organisms. The possibility that in plants H3 phosphorylation is related to sister chromatid cohesion is discussed.  相似文献   

2.
In tetraploid rye with single-substitution wheat chromosomes - 1A, 2A, 5A, 6A, 7A, 3B, 5B, 7B - chromosome pairing was analysed at metaphase I in PMCs with the C-banding method. The frequency of univalents of chromosome 1A was considerably higher than that of the other four wheat chromosomes of genome A (6A, 5A, 7A and 2A). Among chromosomes of genome B, the lowest mean frequency of univalents was observed for chromosome 5B. In monosomic lines, wheat chromosomes 1A, 2A, 5A, 6A, 7A and 5B paired with rye homoeologues most often in rod bivalents and in chain quadrivalents (also including 3B). The 47% pairing of 5B-5R chromosomes indicate that the rye genomes block the suppressor Ph1 gene activity. In monosomic plants with chromosomes 5A, 2A, 6A, 7A and 5B, a low frequency of rye univalents was observed. It was also found that the wheat chromosomes influenced the pairing of rye genome chromosomes, as well as the frequency of ring and rod bivalents and tri- and quadrivalents. However, the highest number of terminal chiasmata per chromosome occurred in the presence of chromosomes 5A and 2A, and the lowest - in the presence of chromosomes 3B and 7B. In the presence of chromosome 5B, the highest frequency of bivalents was observed. The results of the present study show that the rye genome is closer related to the wheat genome A of than to genome B. The high pairing of wheat-rye chromosomes, which occurs in tetraploid rye with substitution wheat chromosomes, indicates that there is a high probability of incorporating wheat chromosome segments into rye chromosomes.  相似文献   

3.
含有抗白粉病基因的黑麦染色体小片段向小麦的转移   总被引:7,自引:0,他引:7  
符书兰  唐宗祥  张怀琼  杨足君  任正隆 《遗传》2006,28(11):1396-1400
利用感白粉病的小麦品种绵阳11的纯系和黑麦自交系R12杂交, 在其单体附加系自交后代的BC1F5株系中选择小麦-黑麦异源易位系。根据已报道的黑麦特异重复序列pSc20H设计了一对特异引物, 用PCR方法鉴定了300个单体附加系的自交BC1F5株系,发现其中70个株系含有黑麦染色体成分。一个来源于6R单体附加系的小麦株系96Ⅱ691-830-98表现了对白粉病的高度抗性, PCR方法鉴定证明其含有黑麦染色体成分。对该株系作进一步的基因组原位杂交(GISH)鉴定, 证明它的一对染色体的端部含有黑麦染色体的小片段。这一结果指出, 含有抗白粉病基因的黑麦染色体6R小片段被引入了小麦。研究表明利用单体附加诱导染色体小片段易位是一种有效的方法。利用PCR和GISH原位杂交相结合的方法可提高检测外源染色体小片段的准确性和选择效率。  相似文献   

4.
Chromosome number, meiotic behavior, and pollen viability were analyzed in 15 species of two genera, Vriesea and Aechmea, native to Rio Grande do Sul, Brazil. This study is the first cytogenetic analysis of these taxa. The chromosome numbers are all n = 25, consistent with the proposed base number of x = 25 for Bromeliaceae. All examined taxa displayed regular bivalent pairing and chromosome segregation at meiosis. Observed meiotic abnormalities include univalents in metaphase I; missing or extra chromosomes and precocious division of centromeres in metaphase II; laggards in telophase I and anaphase II/telophase II. The high pollen viability (>88%) reflects a regular meiosis.  相似文献   

5.
Mating experiments are described for sheep with three different Robertsonian translocations in the single heterozygous t1, t2 and t3, homozygous t1t1 and t3t3 and double heterozygous t1t2 and t1t3 state. The experiments were designed to investigate several previously reported unusual chromosome segregation ratios in sheep, to test the fertility of translocation heterozygous ewes mated to rams of normal karyotype and to test both the fertility and segregation patterns of sheep which were double translocation heterozygotes. The fertility of the translocation heterozygous ewes was normal as assessed from conception to first service, numbers of non-conceiving ewes and lambing percentages. Two types of double translocation heterozygous rams mated to ewes of normal karyotype produced regular chromosome segregation patterns in their progeny and the matings were of normal fertility. Double translocation heterozygous ewes were also fertile. Four sheep were bred with 51 chromosomes. Two of these were triple heterozygotes with three different Robertsonian translocations 51,xy,t1t2t3 and 51,xx,t1t2t3 and two were homozygous for one translocation and heterozygous for the others, namely 51,xx,t1t2t3 and 51,xxt1t3t3. All sheep were phenotypically normal. It is concluded that the t1,t2 and t3 Robertsonian translocations of sheep do not affect reproductive performance significantly.  相似文献   

6.
Robertsonian translocations are the most common structural rearrangements of human chromosomes. Although segregation of Robertsonian chromosomes has been examined in many families, there is little consensus on whether inheritance in the balanced progeny conforms to Mendelian ratios. To address this question, we have compiled previously reported segregation data, by sex of parent, for 677 balanced offspring of Robertsonian carriers from 82 informative families and from a prenatal diagnosis study on the risk of unbalanced offspring in carriers of chromosome rearrangements. Care was taken to avoid any source of ascertainment bias. Our analysis supports the following conclusions: (1) the transmission ratio is not independent of the sex of the carrier; (2) the transmission ratio distortion is observed consistently only among the offspring of carrier females; (3) the transmission ratio distortion does not appear to be dependent on the presence of a specific acrocentric chromosome in the rearrangement. The sex-of-parent-specific origin of the non-Mendelian inheritance, the finding that the rearranged ("mutant") chromosomes are recovered at significantly higher frequency than the acrocentric ("normal") chromosomes, and the similarities between these observations and the segregation of analogous rearrangements through female meiosis in other vertebrates strongly support the hypothesis that the transmission ratio distortion in favor of Robertsonian translocations in the human results from the preferential segregation of chromosomes during the first meiotic division. This non-Mendelian inheritance will result in increased overall risk of aneuploidies in the families of Robertsonian translocation carriers, independently of the origin of the transmission ratio distortion.  相似文献   

7.
Additional or B chromosomes not belonging to the regular karyotype of a species are found in many animal and plant groups. They form a highly heterogeneous group with respect to their morphology and behaviour both in mitosis and meiosis. Achiasmatic mechanisms that ensure the segregation of a B chromosome from another B chromosome or from an A chromosome are reviewed. An achiasmatic mechanism characterized by the "distance pairing" of segregating univalents at metaphase I was found to be responsible for the preferential segregation of B chromosome univalents in Hemerobius marginatus L. (Neuroptera), and a mechanism characterized by the "touch and go pairing" of segregating univalents was responsible for the highly regular segregation of a B chromosome and the X chromosome in Rhinocola aceris (L.) (Psylloidea, Homoptera). The latter mechanism resulted in the integration of a B chromosome to the A chromosome set as a Y chromosome in a psyllid species Cacopsylla peregrina (Frst.). Furthermore, B chromosomes can disturb the regular segregation of the achiasmatic X and Y chromosomes resulting in the formation of X0/XY polymorphism in a population, which might precede the loss of the Y chromosome. The absence of observations on accurately functioning achiasmatic segregation mechanisms in grasshoppers (Orthoptera) was attributed to the X and B chromosomes, which re-orient one or several times during metaphase I. Apparently, these re-orientations mask any achiasmatic segregation mechanism that might operate during meiotic prophase in these insects.  相似文献   

8.
It was demonstrated that mutations T, Fu, Ki, t6 of chromosome 17 cause preferential transmission of the acrocentric homologues to the progeny from female Rb heterozygotes. The results indicate that the effects of these mutations on segregation are restricted to the Robertsonian translocations involving chromosome 17. Substitution of the parts of chromosome 17 distal or proximal to the T-locus did not alter the effect, of this chromosome on the transmission rate of the homologue. The transmissions effects of these mutations, whether cis or trans with Rb, were the same. It was observed that mothers Rb7/T43H transmitted the chromosome with the reciprocal translocation T43H to 70.9% of their progeny. Data were obtained supporting the idea that structural changes of the chromosomes caused by mutations affect segregation of the homologues in Rb heterozygous females. The possible mechanism of this influence is discussed.  相似文献   

9.
As a prerequisite to determine physical gene distances in barley chromosomes by deletion mapping, a reliable, fast and inexpensive approach was developed to detect terminal deletions and translocations in individual barley chromosomes added to the chromosome complement of common wheat. A refined fluorescence in situ hybridization (FISH) technique subsequent to N-banding made it possible to detect subtelomeric repeat sequences (HvT01) on all 14 chromosome arms of barley. Some chromosome arms could be distinguished individually based on the number of FISH signals or the intensity of terminal FISH signals. This allowed the detection and selection of deletions and translocations of barley chromosomes (exemplified by 7H and 4HL), which occurred in the progeny of the wheat lines containing a pair of individual barley chromosomes (or telosomes) and a single so-called gametocidal chromosome (2C) of Aegilops cylindrica. This chromosome is known to cause chromosomal breakage in the gametes in which it is absent. Terminal deletions and translocations in barley chromosomes were easily recognized in metaphase and even in interphase nuclei by a decrease in the number of FISH signals specific to the subtelomeric repeat. These aberrations were verified by genomic in situ hybridization. The same approach can be applied to select deletions and translocations of other barley chromosomes in wheat lines that are monosomic for the Ae. cylindrica chromosome 2C.  相似文献   

10.

Key message

A complete set of six compensating Robertsonian translocation chromosomes involving barley chromosome 7H and three chromosomes of hexaploid wheat was produced. Grain β-glucan content increased in lines containing 7HL.

Abstract

Many valuable genes for agronomic performance, disease resistance and increased yield have been transferred from relative species to wheat (Triticum aestivum L.) through whole-arm Robertsonian translocations (RobT). Although of a great value, the sets of available translocations from barley (Hordeum vulgare L.) are limited. Here, we present the production of a complete set of six compensating RobT chromosomes involving barley chromosome 7H and three group-7 chromosomes of wheat. The barley group-7 long-arm RobTs had a higher grain β-glucan content compared to the wheat control. The β-glucan levels varied depending on the temperature and were higher under hot conditions. Implicated in this increase, the barley cellulose synthase-like F6 gene (CslF6) responsible for β-glucan synthesis was physically mapped near the centromere in the long arm of barley chromosome 7H. Likewise, wheat CslF6 homoeologs were mapped near the centromere in the long arms of all group-7 wheat chromosomes. With the set of novel wheat–barley translocations, we demonstrate a valuable increase of β-glucan, along with a resource of genetic stocks that are likely to carry many other important genes from barley into wheat.
  相似文献   

11.
M L Irigoyen  C Linares  E Ferrer  A Fominaya 《Génome》2002,45(6):1230-1237
Fluorescent in situ hybridization (FISH) employing multiple probes was used with mitotic or meiotic chromosome spreads of Avena sativa L. cv. SunII and its monosomic lines to produce physical chromosome maps. The probes used were Avena strigosa pAs120a (which hybridizes exclusively to A-genome chromosomes), Avena murphyi pAm1 (which hybridizes exclusively to C-genome chromosomes), A. strigosa pAs121 (which hybridizes exclusively to A- and D-genome chromosomes), and the wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH employing two-by-two combinations of these probes allowed the unequivocal identification and genome assignation of all chromosomes. Ten pairs were found carrying intergenomic translocations: (i) between the A and C genomes (chromosome pair 5A); (ii) between the C and D genomes (pairs 1C, 2C, 4C, 10C, and 16C); and (iii) between the D and C genomes (pairs 9D, 11D, 13D, and 14D). The existence of a reciprocal intergenomic translocation (10C-14D) is also proposed. Comparing these results with those of other hexaploids, three intergenomic translocations (10C, 9D, and 14D) were found to be unique to A. sativa cv. SunII, supporting the view that 'SunII' is genetically distinct from other hexaploid Avena species and from cultivars of the A. sativa species. FISH mapping using meiotic and mitotic metaphases facilitated the genomic and chromosomal identification of the aneuploid chromosome in each monosomic line. Of the 18 analyzed, only 11 distinct monosomic lines were actually found, corresponding to 5 lines of the A genome, 2 lines of the C genome, and 4 lines of the D genome. The presence or absence of the 10C-14D interchange was also monitored in these lines.  相似文献   

12.
Summary A woman was found to have 42 autosomes due to engagement of both chromosomes 14 in Robertsonian rearrangements, one with a chromosome 21 and the other with a chromosome 22: t(14q21q) and t(14q22q). The two translocations appear monocentric and by silver staining have no rRNA activity. The t(14q21q) translocation is familial and was ascertained through a nephew with Down syndrome, while the origin of the t(14q22q) translocation was not established. In addition to these two translocations, the woman had XX/XXX sex chromosome mosaicism. She has had two recognized pregnancies, each resulting in the birth of a child with one of the two translocations. Both children are phenotypically normal, as is their mother, the first normal liveborn individual identified with two Robertsonian translocations.  相似文献   

13.
Shi F  Endo TR 《Chromosoma》2000,109(5):358-363
Chromosome 2C of Aegilops cylindrica induces chromosomal rearrangements in alien chromosome addition lines, as well as in euploid lines, of common wheat. To induce chromosomal rearrangements in barley chromosome 7H, reciprocal crosses were made between a mutation-inducing common wheat line that carries a pair of 7H chromosomes and one 2C chromosome and a 7H disomic addition line of common wheat. Many shrivelled seeds were included in the progeny, which was an indication of the occurrence of chromosome mutations. The chromosomal constitution of the viable progeny was examined by FISH (fluorescence in situ hybridization) using the barley subterminal repeat HvT01 as a probe. Structural changes of chromosome 7H were found in about 15% of the progeny of the reciprocal crosses. The aberrant 7H chromosomes were characterized by a combination of N-banding, FISH and genomic in situ hybridization. Mosaicism for aberrant 7H chromosomes was observed in seven plants. In total, 89 aberrant 7H chromosomes were identified in 82 plants, seven of which had double aberrations. More than half of the plants carried a simple deletion: four short-arm telosomes, one long-arm telosome, and 45 terminal deletions (23 in the short arm, 21 in the long arm, and one involving both arms). About 40% of the aberrations represented translocations between 7H and wheat chromosomes. Twenty of the translocations had wheat centromeres, 12 the 7H centromere, with translocation points in the 7HS (five) and in the 7HL (seven), and the remaining four were of Robertsonian type, three involving 7HS and one with 7HL. In addition, one translocation had a barley segment in an intercalary position of a wheat chromosome, and two were dicentric. The breakpoints of these aberrations were distributed along the entire length of chromosome 7H.  相似文献   

14.
V. Guacci  D. B. Kaback 《Genetics》1991,127(3):475-488
Distributive disjunction is defined as the first division meiotic segregation of either nonhomologous chromosomes that lack homologs or homologous chromosomes that have not recombined. To determine if chromosomes from the yeast Saccharomyces cerevisiae were capable of distributive disjunction, we constructed a strain that was monosomic for both chromosome I and chromosome III and analyzed the meiotic segregation of the two monosomic chromosomes. In addition, we bisected chromosome I into two functional chromosome fragments, constructed strains that were monosomic for both chromosome fragments and examined meiotic segregation of the chromosome fragments in the monosomic strains. The two nonhomologous chromosomes or chromosome fragments appeared to segregate from each other in approximately 90% of the asci analyzed, indicating that yeast chromosomes were capable of distributive disjunction. We also examined the ability of a small nonhomologous centromere containing plasmid to participate in distributive disjunction with the two nonhomologous monosomic chromosomes. The plasmid appeared to efficiently participate with the two full length chromosomes suggesting that distributive disjunction in yeast is not dependent on chromosome size. Thus, distributive disjunction in S. cerevisiae appears to be different from Drosophila melanogaster where a different sized chromosome is excluded from distributive disjunction when two similar size nonhomologous chromosomes are present.  相似文献   

15.
The effect of wheat-rye chromosome 1Rv/1A, 2R/2D and 6R/6A substitutions characterized by differences in the expression of the equational division of sister centromeres in anaphase I on segregation and the elimination of wheat and rye univalents was investigated. To determine the individual effect of each of the studied chromosomal pairs, a comparative analysis of the univalent behavior in the meiosis of dimonosomic 1Rv-1A, 2R-2D, 6R-6A and tetramonosomics 1Rv-2R-1A-2D, 1Rv-6R-1A-6A, 2R-6R-2D-6A was conducted. 2R/2D substitution was experimentally demonstrated to suppress an equational univalents division, while 6R/6A substitution resulted in high frequency chromosomes’ elimination, especially in the meiosis of 2R-6R-2D-6A tetramonosomics. Other meiotic mechanisms, together with the sister chromatids separation at anaphase I, may affect the elimination of the final products of univalent segregation. It was demonstrated that the number and pattern of univalent chromosomal behavior affected hybrid plant fertility.  相似文献   

16.
本文利用普通小麦品系"中国春"(对照)、中国春ph1b突变体分别与八倍体小黑麦、六倍体小黑麦杂交,杂种F1的减数分裂前期Ⅰ染色体行为表现异常,中期Ⅰ出现较多的单价体、棒状二价体和多价体,在后期和末期出现落后染色体、染色体片断和微核。原因是ph1b基因的存在造成染色体联会机制紊乱,致使一些部分同源染色体配对并发生互换,有可能在以后的世代产生染色体易位与基因重组。  相似文献   

17.
The physical mapping of single locus sequences by tyramide-fluorescence in situ hybridization (Tyr-FISH) and the analysis of sequences obtained from microdissected chromosomes were assayed as potential tools for (1) determining homology and homoeology among chromosome regions of Avena species, and (2) establishing associations between linkage groups and specific chromosomes. Low copy number probes, derived from resistance gene analogues (RGAs) and 2.8-4.5 kb long, successfully produced hybridization signals on specific chromosomes. Four sets of homoeologous chromosome regions were identified in the hexaploids using 3 probes that produced 4 single locus markers in A. strigosa and 2 in A. eriantha. Laser capture microdissection of metaphase I cells of A. sativa monosomic lines allowed the isolation of critical univalents. Sequences derived from 2 RGAs were successfully amplified in DNA extracted from univalents. In one instance, it was possible to map a nucleotide polymorphism specific for 1 chromosome. An association was established between this chromosome and its linkage groups in 2 hexaploid genetic maps. The results indicate that Tyr-FISH is useful in the characterization of homoeologous chromosome segments in hexaploids, whereas chromosome microdissection, as employed in this work, needs to be improved before it can routinely be used with meiotic chromosomes.  相似文献   

18.
Univalent chromosomes at meiotic metaphase I have a tendency to misdivide at the centromeres. Fusion of the misdivision products may produce Robertsonian translocations. The fine structure of the centromeres in Robertsonian wheat-rye translocation chromosomes was analyzed by fluorescence in situ hybridization (FISH) using two centromere-specific DNA clones: pRCS1, derived from rice, and pAWRC1, derived from rye. Clone pRCS1 hybridizes to the centromeres of all grasses including wheat and rye, whereas clone pAWRC1 is rye specific and hybridizes only to the centromeres of rye. Four of the six wheat-rye translocations derived from a single centric misdivision event (1st generation translocations) had hybrid centromeres, with approximately half of the centromere derived from rye and half from wheat. In the two other 1st generation translocations, the entire centromere was derived from rye. Among eight reconstructed wheat and rye chromosomes that originated from two consecutive centric misdivision-fusion events (2nd generation translocations), T1BS.1BL (derived from T1BS.1RL and T1RS.1BL) and one of three T2BS.2BL (derived from T2RS.2BL and T2BS.2RL) had hybrid centromeres. T1RS.1RL (derived from T1BS.1RL and T1RS.1BL), two of three T2BS.2BL, and all three T2RS.2RL (derived from T2RS.2BL and T2BS.2RL) had rye centromeres. All three 3rd generation translocations had hybrid centromeres with approximately half of the centromere derived from rye. There were no indications that the composite structure of the centromere in these chromosomes affected their behavior in mitosis or meiosis. These observations support the notion of a compound structure of the centromere in higher organisms, and indicate that during the centric breakage-fusion event, centromere breakage may occur in different positions along the segment of the chromosome that interacts with the spindle fibers. Normal behavior of the 1st, 2nd, and 3rd generation centric translocations in mitosis and meiosis indicates that, at least in wheat and rye, centromeres are not chromosome specific.  相似文献   

19.
Meiotic segregation patterns of carriers of Robertsonian translocations (RT) are important for assessing the risk of unbalanced forms. We investigated the ratio of sperm with t(21;21) to sperm with nullisomy for chromosome 21; the segregation of the t(21;21) along with sex chromosomes, and also interchromosomal effects on chromosome 10 by using three color fluorescence in situ hybridization (FISH) with telomere specific (Tel 21q) and centromere-specific alpha satellite probes for chromosomes X, Y, and 10. The percentage of cosegregation of t(21;21) with sex chromosomes (49.50%) and without sex chromosomes (46.98%) was not significant. There are no significant differences between the percentages of cosegregation of t(21;21) with chromosome X (23.36%) and with chromosome Y (26.16%). No evidence of an interchromosomal effect on chromosome 10 was detected, the percentage of chromosome 10 aneuploidy being similar to that in controls. In addition, the frequency of diploid sperm nuclei was not significantly higher in the carrier (0.32%) than in the controls (0.44%) (P > 0.05). The sex ratio was similar within the carrier and the controls and between the carrier and the control. Three color-FISH analysis, using different probe combinations, seems a rapid and accurate tool for direct analysis of meiotic segregation product.  相似文献   

20.
小麦叶锈病新抗源筛选   总被引:1,自引:0,他引:1  
小麦叶锈病是小麦生产的主要病害之一,发病严重时往往导致大幅度减产。叶锈菌生理小种的变异易导致抗病基因抗性的丧失,因此不断获得新抗源对小麦抗病育种至关重要。小麦近缘植物中含有丰富的小麦育种所需的抗病基因。本研究从小麦-近缘植物双二倍体、附加系、代换系或易位系等创新种质中筛选出小麦叶锈病新抗源,为利用这些新抗源打下基础。苗期对116份供试材料人工接种美国堪萨斯州流行的小麦叶锈菌混合生理小种 (Lrcomp) ,其中部分材料人工接种09-9-1441-1等5个中国当前流行的叶锈菌生理小种进行抗性鉴定,筛选获得新抗源。116份种质中,31份免疫、近免疫或高抗Lrcomp。含有希尔斯山羊草、尾状山羊草、拟斯卑尔脱山羊草、两芒山羊草、卵穗山羊草、沙融山羊草、柱穗山羊草、顶芒山羊草、小伞山羊草、偏凸山羊草、中间偃麦草、茸毛偃麦草、长穗偃麦草、粗穗披碱草、栽培黑麦、非洲黑麦、提莫菲维染色质的部分种质免疫或高抗Lrcomp,而含二角山羊草、无芒山羊草、沙生冰草、多年生簇毛麦和一年生簇毛麦染色质的种质表现中感至高感Lrcomp。希尔斯山羊草4S染色体、尾状山羊草C#1和D#1染色体和两芒山羊草、顶芒山羊草中可能含有未被报道的抗Lrcomp的新基因,值得进一步向小麦转育。小麦-粗穗披碱草1HtS.1BL罗伯逊易位系对Lrcomp及 09-9-1441-1和09-9-1426-1等5个中国当前流行叶锈菌生理小种近免疫,值得利用染色体工程等方法获得小片段抗病易位系应用于我国小麦抗叶锈育种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号