首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Prompt chlorophyll a fluorescence kinetics at room temperature were measured from intact spruce needles. The fluorescence signal was recorded after varying light pretreatments. During the winter, induction curves showed characteristic changes in both the initial peak of fluorescence FV/FP (FP-FO/FP) and the steady state level Fdr (FP-FT/FP). Winter stress induced decreases in both values which showed close correlation to the light and temperature pre-history of the plants. In February changes in fluorescence induction indicative of a restoration of photosynthesis were detected and these corresponded to a rise of temperature above zero in combination with low light levels. In March increasing light intensity combined with chilling temperatures induced again decreases of both values of chlorophyll fluorescence induction suggesting the occurrence of photoinhibition.  相似文献   

4.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

5.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from fir ( Abies alba Mill.) and spruce ( Picea abies [L.] Karst.) needles was purified to homogeneity. The enzyme was isolated from crude extracts through quantitative precipitation in 40-55% and 40-60% (NH4)2SO4 for fir and spruce. respectively, followed by linear sucrose gradient centrifugation. Using two dimensional gel electrophoresis, the isoelectric points were determined. For the large subunit (LSU) it was 6.7 for both species, and for the small subunit (SSU) it was 7.1 and 7.7 for fir and spruce, respectively. Very few differences in tryptic peptides and amino acid composition of Rubisco LSU were observed between fir and spruce. By contrast, marked differences characterized the same analyses for the Rubisco SSU of the two species. Moreover, substitution of residues was observed in the sequenced N-terminal region when comparing fir and spruce SSU. The Ouchterlony technique showed no immu-nochemical difference between Rubisco of fir and spruce when a rabbit antiserum to spinach Rubisco was used. The Eadie-Hofstee plots of carboxylase activity indicated that the apparent Km(CO2) were 31 and 36 μ M for the fir and spruce enzymes, respectively.  相似文献   

6.
The incorporation of 14C-leucine into the total-protein fraction of needles of Norway spruce (Picea abies [L.] Karst.) during short time incubation was used as a measure of protein synthesis in the light and in the dark. Light saturation curves, obtained for needles of different ages (new flush and 1 and 2 years old) or at different seasons (summer-winter) followed the Michaelis-Menten algorithm, exhibiting marked differences with regard to light saturation (Vmax) and the half-saturation constant (K5. 2). The light saturation curves of ATP level (mg g?1 fresh weight) and of leucine incorporation into protein (nmol mg?1 h?1) matched each other, suggesting that photophosphorylation may be decisive for the rate of protein synthesis in the light. This is confirmed by the action spectrum of leucine incorporation. which resembled an action spectrum of leaf photosynthesis, and also by partial inhibition of protein synthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of non-cyclic photophosphorylation. Light stimulated protein synthesis showed pronounced seasonal fluctuations with a summer maximum. Furmigation of 5 years old spruce trees for 3 months with SO2 in combination with O3 and/or NO2 caused a distinct enhancement of the protein synthesis rate in the light and, at a reduced absolute level, also in the dark. A similar result was obtained for 40 to 70 years old spruce stands when healthy and sick trees were compared: the latter being afflicted by the novel type of forest decline, which is characterized by yellowish bronze discolouration of sun-exposed older needles and partial loss of older needle generations (3 to 4 years old). The 1 year old needles of the unhealthy trees showed a markedly increased 14C-leucine incorporation rate which, in the dark, was even more pronounced than in the light. Stress-physiological mechanisms, which could possibly explain this stimulation, are discussed.  相似文献   

7.
Spruce shoot aphid, Cinara pilicornis Hartig (Homoptera: Lachnidae), is an aphid species that has shown enhanced performance on trees exposed to SO2 or mixtures of air pollutants, whereas results with ozone have been contradictory. Using a 4-week chamber fumigation experiment, we tested how different population dynamic parameters of aphids are affected by ozone (O3). Mean relative growth rate (MRGR), development time and reproduction rate of C. pilicornis were determined using 7h day-time O3 concentrations of 0, 40, 80 and 160 ppb. Development period from birth to reproductive stage was fastest at 80 ppb during early shoot elongation, while reproduction and intrinsic rate of population increase was not significantly affected by ozone concentration. There was a significant negative correlation between ozone concentration and the MRGR of first instar nymphs in the third fumigation week. In feeding test performed on seedlings after fumigation, the MRGR was reduced on shoots which had been exposed to 80 ppb O3. The results suggest that elevated O3 concentration during early shoot elongation period may stimulate population development of C. pilicornis, but on maturing shoots, high O3 concentration has a negative effect on aphid performance. This might be due to accelerated ageing of O3 exposed shoots.  相似文献   

8.
9.
The induction of activity of the enzyme nitrate reductase (NR, EC 1.6.6.1, 1.6.6.2) in needles of Norway spruce ( Picea abies [L.] Karst.) by nitrogen dioxide (NO2) was studied under laboratory and field conditions. In fumigation chambers an increase in nitrate reductase activity (NRA) was detected 4 h after the start of the NO2 treatment. During the first 2 days with 100 µg NO2 m−3, NRA reached a constant level and did not change during the following 4 days. At the same level of NO2, NRA was lower in needles from trees grown on NPK‐fertilized soil than on non‐fertilized soil. After the transfer of spruce trees from fertilized soil to NPK‐rich nutrient solution, NRA was transiently increased. This effect was assigned to root injuries causing nitrate transport to the shoot and subsequent induction of NRA. Neither trees on fertilized soil nor trees transferred to NPK‐poor nutrient solution had increased NRA unless NO2 was provided. The NO2 gradient in the vicinity of a highway was used to test the long‐term effect of elevated levels of NO2 on needle NRA of potted and field‐grown spruce trees. Compared with less polluted sites, permanently increased NRAs were detected when NO2 concentrations were above 20 µg m−3. Controls of field measurements some 10 years after the introduction of catalytic converters in cars showed no significant change neither in NO2 levels nor in the decreasing NRA of spruce needles with the distance from the highway.  相似文献   

10.
In vivo 15N and 14N nuclear magnetic resonance spectroscopy was used to investigate the assimilation of nitrate and ammonium in seedlings of Norway spruce (Picea abies [L.] Karst.). The main objective was to study accumulation of free NH+4 and examine to what extent the nitrogen source affects the composition of the free amino acid pools in roots, stems and needles. NH+4 concentrations in plants growing in the presence of 0.5–50 mM ammonium were quantified using 14N NMR. The NH+4 values in tissues ranged from 6 to 46 μmol (g fresh weight)?1. with highest concentrations in roots and needles. The tissue NH+4 peaked at 5.0 mM NH+4 in the medium. and failed to increase when NH+4 in the medium was increased to 50 mM, indicating metabolic control of the concentration of this cation in tissues. The 14N NMR spectra were used to estimate pH of the NH+4 storage pools. Based on the pH sensitivity of the quintet of 14NH+4 resonance, we suggest that the pH of the ammonium storage compartments in the roots and stems should be 3.7–3.8, and in needles 3.4–3.5, representing extremely low pH values of the tissue. 15N from nitrate or ammonium was first incorporated into the amide group of glutamine and then into α-amino groups, confirming that the glutamine synthetase/ glutamate synthase cycle is the major route of nitrogen assimilation into amino acids and thus plays a role in lowering the levels of NH+4 in the cytoplasm. NH+4 can also be assimilated in roots in plants growing in darkness. The main 15N-labelled amino acids were glutamine. arginine and alanine. Almost no 15N signals from needles were observed. Double labelling (δN + w, wN) of arginine is consistent with the operation of the ornithine cycle, and enrichment indicates that this cycle is a major sink of newly assimilated nitrogen. Nitrogen assimilation in roots in the presence of added methionine sulphoximine and glutamate indicated the catabolic action of glutamate dehydrogenase. The 15N NMR spectra of plants grown on 15N-urea showed a marked increase in the labelling of ammonium and glutamine. indicating high urease activity. Amino acids were also quantified using high pressure liquid chromatography. Arginine was found to be an important transport form of nitrogen in the stem.  相似文献   

11.
Diurnal changes of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity and its content were measured to find the mechanism of RuBPCO activity regulation in Norway spruce needles. Both initial and total RuBPCO activities as well as the activation state had a typical pattern with two peaks in the morning and afternoon, respectively, and a midday depression. On the 19 October, RuBPCO content decreased during the day from 3.1 to 1.4 g m−2, while on the 20 October it was approximately constant both in the morning and in the afternoon (2.7 g m−2). Neither initial nor total activity of RuBPCO copied irradiances. Relatively low morning and evening values of total activities indicate that nocturnal inhibitor CA1P is important in Norway spruce. However, the midday depression of total activity indicates that besides CA1P there function some other inhibitors of RuBPCO. In addition, the diminution of RuBPCO content during the day may indicate repression of its gene expression.  相似文献   

12.
Highly purified chloroplasts were isolated from spruce ( Picea abies [L.] Karst.) needles by free-flow electrophoresis. The chloroplast crude suspension was separated into two structurally different populations. The two populations could not be distinguished according to their protein/chlorophyll ratios and protein patterns from two-dimensional gel electrophoresis. The O2 evolution, however, showed differences: the chloroplast population deflected towards the cathode contained a major part of structurally intact chloroplasts in contrast to the population deflected towards the anode. The two populations were not contaminated by endoplasmatic membranes or mitochondria.  相似文献   

13.
Seasonal profiles of sulphur, phosphorus, and potassium content in the wood of trees have been established for the first time. This became possible by using a novel laser ablation system coupled to HR-ICP-MS for measuring these elements in Norway spruce drill cores. This technique combines excellent spatial resolution with superior detection power, and makes it possible to measure low element concentrations even in relatively narrow annual rings. Despite its low quantity in wood, sulphur is an important macronutrient for plants and seems to display seasonal variations of its concentration, which correspond to actual theories of sulphur metabolism in plants. A similar seasonal pattern was also found for phosphorus, another crucial element in tree nutrition. This was unexpected, because it was previously assumed that the distribution of phosphorus remains constant throughout the year. Potassium, the third element measured, seems to be especially accumulated in the latewood. The profiles presented in this article suggest a seasonal variation, revealing some new aspects of Norway spruce (PICEA ABIES) metabolism.  相似文献   

14.
Cuttings were taken from 4-week-old seedlings of Norway spruce ( Picea abies L. Karst.) raised at two different irradiation levels. Rooting experiments showed that root formation was increased by the ethylene formed by adding 1-aminocyclopropane-1-carboxylic acid ACC or Ethrel, especially in the slowly rooting cuttings grown under high light (HL). Cobaltousion. an ethylene synthesis inhibitor, delayed rooting, especially in the easily rooted cuttings grown under low light (LL).
Compounds isolated from the cuttings using immunoaffinity chromatography, on a column with antibodies against cytokinins, and separated by HPLC decreased in amount during the first week of the rooting period. An increase in ethylene production accelerated this process, especially in cuttings grown under HL, whereas cobaltous ion delayed it. We suggest that ethylene stimulates rooting by enhancing the degradation of cytokinins.  相似文献   

15.
16.
17.
Five-year-old Picea abies L. plants were grown in growth cabinets in the presence (3.1 μmol m−3) or absence of SO2. After 5 weeks, the photosynthetic capacity of mature needles produced in the year was the same in both conditions. Trees were then submitted in situ to drought stress by withholding water. The decline of leaf photosynthetic capacity was greatest in the presence of SO2. Chlorophyll decreased only when trees were submitted to dehydration in the presence of SO2; however, this al-one could not account for the large decline in photosynthetic capacity observed under that condition. Needle water content was the lowest during dehydration in the presence of SO2. It is concluded that the critical factor in the interaction between pollution by SO2 and drought stress is the greater dehydration of the tissue found in stressed plants grown in the presence of SO2. The large decline in photosynthetic capacity under such conditions might be due to this greater dehydration.  相似文献   

18.
19.
Spruce seedlings [ Picea abies (L.) Karst.] were exposed in nutrient solutions to a range of concentrations of HgCl2 and CH3HgCl for 7 weeks. The mineral, chlorophyll and water contents of the needles, and dry weights of root and needles were then estimated. The rates of photosynthesis, transpiration and dark respiration of the intact plants were determined using a Li-cor portable photosynthesis-measuring system. CO2 uptake decreased as the supply of both forms of Hg increased. Rates of transpiration were significantly reduced only after exposure to CH3HgCl. Similar concentrations of Hg were found in needles independent of the form of Hg supplied. Decreased rates of CO2 uptake at 100 n M HgCl2 and 1 n M CH3HgCl could be explained by lower levels of chlorophyll, and by lower levels of chlorophyll and closed stomata at all other CH3HgCl concentrations. Only at 1000 n M HgCl2 were other photosynthetic parameters affected.
Decreased rates of transpiration and the lower chlorophyll levels in the needles did not appear to be due to the direct action of Hg, but rather to root damage that leads to a decrease in water supply and nutrient levels in the needles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号