首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, we showed that overexpression of peripherin, a neuronal intermediate filament (IF) protein, in mice deficient for neurofilament light (NF-L) subunits induced a progressive adult-onset degeneration of spinal motor neurons characterized by the presence of IF inclusion bodies reminiscent of axonal spheroids found in amyotrophic lateral sclerosis (ALS). In contrast, the overexpression of human neurofilament heavy (NF-H) proteins provoked the formation of massive perikaryal IF protein accumulations with no loss of motor neurons. To further investigate the toxic properties of IF protein inclusions, we generated NF-L null mice that co-express both peripherin and NF-H transgenes. The axonal count in L5 ventral roots from 6 and 8-month-old transgenic mice showed that NF-H overexpression rescued the peripherin-mediated degeneration of motor neurons. Our analysis suggests that the protective effect of extra NF-H proteins is related to the sequestration of peripherin into the perikaryon of motor neurons, thereby abolishing the development of axonal IF inclusions that might block transport. These findings illustrate the importance of IF protein stoichiometry in formation, localization and toxicity of neuronal inclusion bodies.  相似文献   

2.
A neurotoxic peripherin splice variant in a mouse model of ALS   总被引:3,自引:0,他引:3  
Peripherin, a neuronal intermediate filament (nIF) protein found associated with pathological aggregates in motor neurons of patients with amyotrophic lateral sclerosis (ALS) and of transgenic mice overexpressing mutant superoxide dismutase-1 (SOD1G37R), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. Mouse peripherin is unique compared with other nIF proteins in that three peripherin isoforms are generated by alternative splicing. Here, the properties of the peripherin splice variants Per 58, Per 56, and Per 61 have been investigated in transfected cell lines, in primary motor neurons, and in transgenic mice overexpressing peripherin or overexpressing SOD1G37R. Of the three isoforms, Per 61 proved to be distinctly neurotoxic, being assembly incompetent and inducing degeneration of motor neurons in culture. Using isoform-specific antibodies, Per 61 expression was detected in motor neurons of SOD1G37R transgenic mice but not of control or peripherin transgenic mice. The Per 61 antibody also selectively labeled motor neurons and axonal spheroids in two cases of familial ALS and immunoprecipitated a higher molecular mass peripherin species from disease tissue. This evidence suggests that expression of neurotoxic splice variants of peripherin may contribute to the neurodegenerative mechanism in ALS.  相似文献   

3.
Peripherin, a type III intermediate filament (IF) protein, upregulated by injury and inflammatory cytokines, is a component of IF inclusion bodies associated with degenerating motor neurons in sporadic amyotrophic lateral sclerosis (ALS). We report here that sustained overexpression of wild-type peripherin in mice provokes massive and selective degeneration of motor axons during aging. Remarkably, the onset of peripherin-mediated disease was precipitated by a deficiency of neurofilament light (NF-L) protein, a phenomenon associated with sporadic ALS. In NF-L null mice, the overexpression of peripherin led to early- onset formation of IF inclusions and to the selective death of spinal motor neurons at 6 mo of age. We also report the formation of similar peripherin inclusions in presymptomatic transgenic mice expressing a mutant form of superoxide dismutase linked to ALS. Taken together, these results suggest that IF inclusions containing peripherin may play a contributory role in motor neuron disease.  相似文献   

4.
Functions of intermediate filaments in neuronal development and disease   总被引:21,自引:0,他引:21  
Five major types of intermediate filament (IF) proteins are expressed in mature neurons: the three neurofilament proteins (NF-L, NF-M, and NF-H), alpha-internexin, and peripherin. While the differential expression of IF genes during embryonic development suggests potential functions of these proteins in axogenesis, none of the IF gene knockout experiments in mice caused gross developmental defects of the nervous system. Yet, deficiencies in neuronal IF proteins are not completely innocuous. Substantial developmental loss of motor axons was detected in mice lacking NF-L and in double knockout NF-M;NF-H mice, supporting the view of a role for IFs in axon stabilization. Moreover, the absence of peripherin resulted in approximately 30% loss of small sensory axons. Mice lacking NF-L had a scarcity of IF structures and exhibited a severe axonal hypotrophy, causing up to 50% reduction in conduction velocity, a feature that would be very detrimental for large animal species. Unexpectedly, the NF-M rather than NF-H protein turned out to be required for proper radial growth of large myelinated axons. Studies with transgenic mice suggest that some types of IF accumulations, reminiscent of those found in amyotrophic lateral sclerosis (ALS), can have deleterious effects and even cause neurodegeneration. Additional evidence for the involvement of IFs in pathogenesis came from the recent discovery of neurofilament gene mutations linked to ALS and Charcot-Marie-Tooth disease (CMT2E). Conversely, we discuss how certain types of perikaryal neurofilament aggregates might confer protection in motor neuron disease.  相似文献   

5.
Transgenic mouse models of amyotrophic lateral sclerosis   总被引:3,自引:0,他引:3  
The discovery of missense mutations in the gene coding for the Cu/Zn superoxide dismutase 1 (SOD1) in subsets of familial cases was rapidly followed by the generation of transgenic mice expressing various forms of SOD1 mutants. The mice overexpressing high levels of mutant SOD1 mRNAs do develop motor neuron disease but unraveling the mechanisms of pathogenesis has been very challenging. Studies with mouse lines suggest that the toxicity of mutant SOD1 is unrelated to copper-mediated catalysis but rather to propensity of a subfraction of mutant SOD1 proteins to form misfolded protein species and aggregates. However, the mechanism of toxicity of SOD1 mutants remains to be elucidated. Involvement of cytoskeletal components in ALS pathogenesis is supported by several mouse models of motor neuron disease with neurofilament abnormalities and with genetic defects in microtubule-based transport. Here, we describe how transgenic mouse models have been used for understanding pathogenic pathways of motor neuron disease and for pre-clinical drug testing.  相似文献   

6.
Peripherin is a neuronal intermediate filament associated with inclusion bodies in motor neurons of patients with amyotrophic lateral sclerosis (ALS). A possible peripherin involvement in ALS pathogenesis has been suggested based on studies with transgenic mouse overexpressors and with a toxic splicing variant of the mouse peripherin gene. However, the existence of peripherin gene mutations in human ALS has not yet been documented. Therefore, we screened for sequence variants of the peripherin gene (PRPH) in a cohort of ALS patients including familial and sporadic cases. We identified 18 polymorphic variants of PRPH detected in both ALS and age-matched control populations. Two additional PRPH variants were discovered in ALS cases but not in 380 control individuals. One variant consisted of a nucleotide insertion in intron 8 (PRPH(IVS8)(-36insA)), whereas the other one consisted of a 1-bp deletion within exon 1 (PRPH(228delC)), predicting a truncated peripherin species of 85 amino acids. Remarkably, expression of this frameshift peripherin mutant in SW13 cells resulted in disruption of neurofilament network assembly. These results suggest that PRPH mutations may be responsible for a small percentage of ALS, cases and they provide further support of the view that neurofilament disorganization may contribute to pathogenesis.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive motor neuron death. More than 90 mutations in the copper-zinc superoxide dismutase (SOD1) gene cause a subset of familial ALS. Toxic properties have been proposed for the ALS-linked SOD1 mutants, but the nature of the toxicity has not been clearly specified. Cytoplasmic inclusion bodies containing mutant SOD1 and a number of other proteins are a pathological hallmark of mutant SOD1-mediated familial ALS, but whether such aggregates are toxic to motor neurons remains unclear. In this study, we identified a dynein subunit as a component of the mutant SOD1-containing high molecular weight complexes using proteomic techniques. We further demonstrated interaction and colocalization between dynein and mutant SOD1, but not normal SOD1, in cultured cells and also in G93A and G85R transgenic rodent tissues. Moreover, the interaction occurred early, prior to the onset of symptoms in the ALS animal models and increased over the disease progression. Motor neurons with long axons are particularly susceptible to defects in axonal transport. Our results demonstrate a direct "gain-of-interaction" between mutant SOD1 and dynein, which may provide insights into the mechanism by which mutant SOD1 could contribute to a defect in retrograde axonal transport or other dynein functions. The aberrant interaction is potentially critical to the formation of mutant SOD1 aggregates as well as the toxic cascades leading to motor neuron degeneration in ALS.  相似文献   

8.
Neurofilaments and motor neuron disease   总被引:3,自引:0,他引:3  
Amyotrophic lateral sclerosis (ALS) is an adult-onset and heterogeneous neurological disorder that affects primarily motor neurons in the brain and spinal cord. Although multiple genetic and environmental factors might be implicated in ALS, the striking similarities in the clinical and pathological features of sporadic ALS and familial ALS suggest that similar mechanisms of disease may occur. A common and perhaps universal pathological finding in ALS is the presence of abnormal accumulations of neurofilaments (often called spheroids or Lewy body-like deposits) in the cell body and proximal axon of surviving motor neurons. Such neurofilament deposits have been widely viewed as a consequence of neuronal dysfunction, perhaps reflecting axonal transport defects. This review discusses the emerging evidence, based primarily on transgenic mouse studies and on the discovery of deletion mutations in a neurofilament gene associated with ALS, that neurofilament proteins can play a causative role in motor neuron disease.  相似文献   

9.
Mutations in copper/zinc superoxide dismutase (SOD1) account for 10-20% of a familial form of amyotrophic lateral sclerosis (ALS). A common feature of SOD1 mutants is abnormal aggregation of the aberrant SOD1 in neurons and glia. We now report that in ALS transgenic mouse models the constitutively expressed heat shock protein 70 (Hsp70) is mislocalized into aggregates together with mutant SOD1 and ubiquitin. Forcing increased synthesis of Hsp70 ameliorates both aggregate formation and toxicity in primary motor neurons in culture. However, chronic increase in an inducible form of Hsp70 to about 10-fold its normal level is shown here not to affect disease course or pathology developed in mice from accumulation of any of three familial ALS causing SOD1 mutants with different underlying biochemical characteristics. Therefore, increasing Hsp70 to a level that is protective in mouse models of acute ischemic insult and selected neurodegenerative disorders is not sufficient to ameliorate mutant SOD1-mediated toxicity.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a disorder that involves the degeneration of motor neurons, muscle atrophy, and paralysis. In a few familiar forms of ALS, mutations in the superoxide dismutase-1 (SOD1) gene have been held responsible for the degeneration of motor neurons. Nevertheless, after the discovery of the SOD1 mutations no consensus has emerged as to which cells, tissues and pathways are primarily implicated in the pathogenic events that lead to ALS. Ubiquitous overexpression of mutant SOD1 in transgenic animals recapitulates the pathological features of ALS. However, the toxicity of mutant SOD1 is not necessarily limited to the central nervous system. Views about ALS pathogenesis are now enriched by the recent discovery of mutations in a pair of DNA/RNA-binding proteins called TDP-43 and FUS/TLS as causes of familial and sporadic forms of ALS. Although the steps that lead to the pathological state are well defined, several fundamental issues are still controversial: are the motor neurons the first direct targets of ALS; and what is the contribution of non-neuronal cells, if any, to the pathogenesis of ALS? The state of the art of ALS pathogenesis and the open questions are discussed in this review.  相似文献   

11.
Peripherin is a type III neuronal intermediate filament detected in motor neuron inclusions of amyotrophic lateral sclerosis (ALS) patients. We previously reported that overexpression of peripherin provokes late-onset motor neuron dysfunction in transgenic mice. Here, we show that peripherin overexpression slows down axonal transport of neurofilament (NF) proteins, and that the transport defect precedes by several months the appearance of axonal spheroids in adult mice. Defective NF transport by peripherin up-regulation was further confirmed with dorsal root ganglia (DRG) neurons cultured from peripherin transgenic embryos. Immunofluorescence microscopy and western blotting revealed that excess peripherin provokes reduction in levels of hyperphosphorylated NF-H species in DRG neurites. Similarly the transport of a green fluorescent protein (GFP)-tagged NF-M, delivered by means of a lentiviral construct, was impaired in DRG neurites overexpressing peripherin. These results demonstrate that peripherin overexpression can cause defective transport of type IV NF proteins, a phenomenon that may account for the progressive formation of ALS-like spheroids in axons.  相似文献   

12.
Peripherin, a neuronal intermediate filament protein associated with axonal spheroids in amyotrophic lateral sclerosis (ALS), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. To further clarify the selectivity and mechanism of peripherin-induced neuronal death, we analyzed the effects of peripherin overexpression in primary neuronal cultures. Peripherin overexpression led to the formation of cytoplasmic protein aggregates and caused the death not only of motor neurons, but also of dorsal root ganglion (DRG) neurons that were cultured from dissociated spinal cords of peripherin transgenic embryos. Apoptosis of DRG neurons containing peripherin aggregates was dependent on the proinflammatory central nervous system environment of spinal cultures, rich in activated microglia, and required TNF-alpha. This synergistic proapoptotic effect may contribute to neuronal selectivity in ALS.  相似文献   

13.
Nguyen MD  Larivière RC  Julien JP 《Neuron》2001,30(1):135-147
Recent studies suggest that increased activity of cyclin-dependent kinase 5 (Cdk5) may contribute to neuronal death and cytoskeletal abnormalities in Alzheimer's disease. We report here such deregulation of Cdk5 activity associated with the hyperphosphorylation of tau and neurofilament (NF) proteins in mice expressing a mutant superoxide dismutase (SOD1(G37R)) linked to amyotrophic lateral sclerosis (ALS). A Cdk5 involvement in motor neuron degeneration is supported by our analysis of three SOD1(G37R) mouse lines exhibiting perikaryal inclusions of NF proteins. Our results suggest that perikaryal accumulations of NF proteins in motor neurons may alleviate ALS pathogenesis by acting as a phosphorylation sink for Cdk5 activity, thereby reducing the detrimental hyperphosphorylation of tau and other neuronal substrates.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder resulting from the degeneration of motor neurons in the cerebral cortex, brainstem, and spinal cord. The cytopathological hallmark in the remaining motor neurons of ALS is the presence of ubiquitylated inclusions consisting of insoluble protein aggregates. In this paper we report that Dorfin, a RING finger-type E3 ubiquitin ligase, is predominantly localized in the inclusion bodies of familial ALS with a copper/zinc superoxide dismutase (SOD1) mutation as well as sporadic ALS. Dorfin physically bound and ubiquitylated various SOD1 mutants derived from familial ALS patients and enhanced their degradation, but it had no effect on the stability of the wild-type SOD1. The overexpression of Dorfin protected against the toxic effects of mutant SOD1 on neural cells and reduced SOD1 inclusions. Our results indicate that Dorfin protects neurons by recognizing and then ubiquitylating mutant SOD1 proteins followed by targeting them for proteasomal degradation.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting the motor neurons. The majority of familial forms of ALS are caused by mutations in the Cu,Zn-superoxide dismutase (SOD1). In mutant SOD1 spinal cord motor neurons, mitochondria develop abnormal morphology, bioenergetic defects, and degeneration. However, the mechanisms of mitochondrial toxicity are still unclear. One possibility is that mutant SOD1 establishes aberrant interactions with nuclear-encoded mitochondrial proteins, which can interfere with their normal trafficking from the cytosol to mitochondria. Lysyl-tRNA synthetase (KARS), an enzyme required for protein translation that was shown to interact with mutant SOD1 in yeast, is a good candidate as a target for interaction with mutant SOD1 at the mitochondrion in mammals because of its dual cytosolic and mitochondrial localization. Here, we show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS). KARS-SOD1 interactions occur also in the mitochondria of the nervous system in transgenic mice. In the presence of mutant SOD1, mitoKARS displays a high propensity to misfold and aggregate prior to its import into mitochondria, becoming a target for proteasome degradation. Impaired mitoKARS import correlates with decreased mitochondrial protein synthesis. Ultimately, the abnormal interactions between mutant SOD1 and mitoKARS result in mitochondrial morphological abnormalities and cell toxicity. mitoKARS is the first described member of a group of mitochondrial proteins whose interaction with mutant SOD1 contributes to mitochondrial dysfunction in ALS.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a chronic, adult-onset neurodegenerative disorder characterized by the selective loss of upper and lower motor neurons, resulting in severe atrophy of muscles and death. Although the exact pathogenic mechanism of mutant superoxide dismutase 1 (SOD1) causing familial ALS is still elusive, toxic protein aggregation leading to insufficiency of chaperones is one of the main hypotheses. In this study, we investigated the effect of over-expressing one of these chaperones, heat shock protein 27 (Hsp27), in ALS. Mice over-expressing the human, mutant SOD1G93A were crossed with mice that ubiquitously over-expressed human Hsp27. Even though the single transgenic hHsp27 mice showed protection against spinal cord ischemia, the double transgenic SOD1G93A/hHsp27 mice did not live longer, and did not show a significant delay in the onset of disease compared to their SOD1G93A littermates. There was no protective effect of hHsp27 over-expression on the motor neurons and on the mutant SOD1 aggregates in the double transgenic SOD1G93A/hHsp27 mice. In conclusion, despite the protective action against acute motor neuron injury, Hsp27 alone is not sufficient to protect against the chronic motor neuron injury due to the presence of mutant SOD1.  相似文献   

17.
Accumulating evidence indicates that abnormal conformation of mutant superoxide dismutase 1 (SOD1) is an essential feature underlying the pathogenesis of mutant SOD1-linked familial amyotrophic lateral sclerosis (ALS). Here we investigated the role of ubiquitin-proteasome pathway in the mutant SOD1-related cell death and the effect of oxidative stress on the misfolding of mutant SOD1. Transient overexpression of ubiquitin with human SOD1 (wild-type, ala4val, gly85arg, gly93ala) in Neuro2A cells decreased the amount of mutant SOD1, but not of wild-type, while only mutants were co-immunoprecipitated with poly-ubiquitin. Proteasome inhibition by lactacystin augmented accumulation of mutant SOD1 in the non-ionic detergent-insoluble fraction. The spinal cord lysates from mutant SOD1 transgenic mice showed multiple carbonylated proteins, including mutant SOD1 with SDS-resistant dimer formation. Furthermore, the treatment of hSOD1-expressing cells with hydrogen peroxide promoted the oligomerization, and detergent-insolubility of mutant SOD1 alone, and the oxidized mutant SOD1 proteins were more heavily poly-ubiquitinated. In Neuro2A cells stably expressing human SOD1 protein, the proteasome function measured by chymotrypsin-like activity, was decreased over time without a quantitative alteration of the 20S proteasomal component. Finally, primary motor neurons from the mouse embryonic spinal cord were more vulnerable to lactacystin than non-motor neurons. These results indicate that the sustained expression of mutant SOD1 leads to proteasomal inhibition and motor neuronal death, which in part explains the pathogenesis of mutant SOD1-linked ALS.  相似文献   

18.
19.
Amyotrophic lateral sclerosis (ALS) is a progressive neurode-generative disease characterized by motor neuron death. A hallmark of the disease is the appearance of protein aggregates in the affected motor neurons. We have found that p62, a protein implicated in protein aggregate formation, accumulated progressively in the G93A mouse spinal cord. The accumulation of p62 was in parallel to the increase of polyubiquitinated proteins and mutant SOD1 aggregates. Immunostaining studies showed that p62, ubiquitin, and mutant SOD1 co-localized in the protein aggregates in affected cells in G93A mouse spinal cord. The p62 protein selectively interacted with familial ALS mutants, but not WT SOD1. When p62 was co-expressed with SOD1 in NSC34 cells, it greatly enhanced the formation of aggregates of the ALS-linked SOD1 mutants, but not wild-type SOD1. Cell viability was measured in the presence and absence of overexpressed p62, and the results suggest that the large aggregates facilitated by p62 were not directly toxic to cells under the conditions in this study. Deletion of the ubiquitin-association (UBA) domain of p62 significantly decreased the p62-facilitated aggregate formation, but did not completely inhibit it. Further protein interaction experiments also showed that the truncated p62 with the UBA domain deletion remained capable of interacting with mutant SOD1. The findings of this study show that p62 plays a critical role in forming protein aggregates in familial ALS, likely by linking misfolded mutant SOD1 molecules and other cellular proteins together.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease in adults, is characterized by the selective degeneration and death of motor neurons leading to progressive paralysis and eventually death. Approximately 20% of familial ALS cases are associated with mutations in SOD1, the gene encoding Cu/Zn-superoxide dismutase (CuZnSOD). Previously, we reported that overexpression of the mitochondrial antioxidant manganese superoxide dismutase (MnSOD or SOD2) attenuates cytotoxicity induced by expression of the G37R-SOD1 mutant in a human neuroblastoma cell culture model of ALS. In the present study, we extended these earlier findings using several different SOD1 mutants (G93C, G85R, and I113T). Additionally, we tested the hypothesis that mutant SOD1 increases mitochondrial-produced superoxide (O(2) (*)) levels and that SOD2 overexpression protects neurons from mutant SOD1-induced toxicity by reducing O(2) (*) levels in mitochondria. In the present study, we demonstrate that SOD2 overexpression markedly attenuates the neuronal toxicity induced by adenovirus-mediated expression of all four SOD1 mutants (G37R, G93C, G85R, or I113T) tested. Utilizing the mitochondrial-targeted O(2) (*)-sensitive fluorogenic probe MitoSOX Red, we observed a significant increase in mitochondrial O(2) (*) levels in neural cells expressing mutant SOD1. These elevated O(2) (*) levels in mitochondria were significantly diminished by the overexpression of SOD2. These data suggest that mitochondrial-produced O(2) (*) radicals play a critical role in mutant SOD1-mediated neuronal toxicity and implicate mitochondrial-produced free radicals as potential therapeutic targets in ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号