首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+) influx appears to be important for triggering myoblast fusion. It remains, however, unclear how Ca(2+) influx rises prior to myoblast fusion. The present study examines a possible involvement of the voltage-dependent Ca(2+) influx pathways. Treatment with the L-type Ca(2+) channel blockers, diltiazem, and nifedipine did not alter cytosolic Ca(2+) levels. Depolarization with high K(+) solution and activation of Ca(2+) channel with Bay K 8644, and agonist of voltage dependent Ca(2+) channels, failed to elicit increases intracellular Ca(2+) level, indicating the absence of depolarization-operated mechanisms. In contrast, phloretin, an agonist of Ca(2+)-activated potassium (K(Ca)) channels, was able to hyperpolarize membrane potential and promoted Ca(2+) influx. These effects were completely abolished by treatment of charybdotoxin, a specific inhibitor of K(Ca) channels. In addition, gadolinium, a potent stretch-activated channel (SAC) blocker, prevented the phloretin-mediated Ca(2+) increase, indicating the involvement of SACs in Ca(2+) influx. Furthermore, phloretin stimulated precocious myoblast fusion and this effect was blocked with gadolinium or charybdotoxin. Taken together, these results suggest that induced hyperpolarization, but not depolarization increases Ca(2+) influx through stretch-activated channels, and in turn triggers myoblast fusion.  相似文献   

2.
TRPM4b is a Ca(2+)-activated, voltage-dependent monovalent cation channel that has been shown to act as a negative regulator of Ca(2+) entry and to be involved in the generation of oscillations of Ca(2+) influx in Jurkat T-lymphocytes. Transient overexpression of TRPM4b as an enhanced green fluorescence fusion protein in human embryonic kidney (HEK) cells resulted in its localization in the plasma membrane, as demonstrated by confocal fluorescence microscopy. The functionality and plasma membrane localization of overexpressed TRPM4b was confirmed by induction of Ca(2+)-dependent inward and outward currents in whole cell patch clamp recordings. HEK-293 cells stably overexpressing TRPM4b showed higher ionomycin-activated Ca(2+) influx than wild-type cells. In addition, analysis of the membrane potential using the potentiometric dye bis-(1,3-dibutylbarbituric acid)-trimethine oxonol and by current clamp experiments in the perforated patch configuration revealed a faster initial depolarization after activation of Ca(2+) entry with ionomycin. Furthermore, TRPM4b expression facilitated repolarization and thereby enhanced sustained Ca(2+) influx. In conclusion, in cells with a small negative membrane potential, such as HEK-293 cells, TRPM4b acts as a positive regulator of Ca(2+) entry.  相似文献   

3.
Intestinal mucosal restitution occurs as a consequence of epithelial cell migration and reseals superficial wounds after injury. This rapid reepithelialization is mediated in part by a phospholipase C-gamma1 (PLC-gamma1)-induced Ca(2+) signaling, but the exact mechanism underlying such signaling and its regulation remains elusive. The small GTP-binding protein Rac1 functions as a pivotal regulator of several signaling networks and plays an important role in regulating cell motility. The current study tests the hypothesis that Rac1 modulates intestinal epithelial cell migration after wounding by altering PLC-gamma1-induced Ca(2+) signaling. Inhibition of Rac1 activity by treatment with its inhibitor NSC-23766 or Rac1 silencing with small interfering RNA decreased store depletion-induced Ca(2+) influx and suppressed cell migration during restitution, whereas ectopic overexpression of Rac1 increased Ca(2+) influx and promoted cell migration. Rac1 physically interacted with PLC-gamma1 and formed Rac1/PLC-gamma1 complex in intestinal epithelial cells. PLC-gamma1 silencing in cells overexpressing Rac1 prevented stimulation of store depletion-induced Ca(2+) influx and cell migration after wounding. Polyamine depletion inhibited expression of both Rac1 and PLC-gamma1, decreased Rac1/PLC-gamma1 complex levels, reduced Ca(2+) influx, and repressed cell migration. Overexpression of Rac1 alone failed to rescue Ca(2+) influx after store depletion and cell migration in polyamine-deficient cells, because it did not alter PLC-gamma1 levels. These results indicate that Rac1 promotes intestinal epithelial cell migration after wounding by increasing Ca(2+) influx as a result of its interaction with PLC-gamma1.  相似文献   

4.
Membrane depolarization is the signal that triggers release of neurotransmitter from nerve terminals. As a result of depolarization, voltage-dependent Ca(2+) channels open, level of intracellular Ca(2+) increases. and release of neurotransmitter commences. Previous study had shown that in rat brain synaptosomes, muscarinic acetylcholine (ACh) receptors (mAChRs) interact with soluble NSF attachment protein receptor proteins of the exocytic machinery in a voltage-dependent manner. It was suggested that this interaction might control the rapid, synchronous release of acetylcholine. The present study investigates the mechanism for such a voltage-dependent interaction. Here we show that depolarization shifts mAChRs, specifically the m2 receptor subtype, to a low affinity state toward its agonists. At resting potential, mAChRs are in a high affinity state (K(d) of approximately 20 nM) and they shift to a low affinity state (K(d) of tens of microM) upon membrane depolarization. In addition, interaction between m2 receptor subtype and the exocytic machinery increases with receptor occupancy. Both phenomena are independent of Ca(2+) influx. We propose that these results may explain control of ACh release from nerve terminals. At resting potential the exocytic machinery is clamped due to its interaction with the occupied mAChR and depolarization relieves this interaction. This, together with Ca(2+) influx, enables release of ACh to commence.  相似文献   

5.
Ca(2+) influx through L-type channels is critical for numerous physiological functions. Relatively little is known about modulation of neuronal L-type Ca(2+) channels. We studied modulation of neuronal Ca(V)1.2c channels heterologously expressed in HEK293 cells with each of the known muscarinic acetylcholine receptor subtypes. Galphaq/11-coupled M1, M3, and M5 receptors each produced robust inhibition of Ca(V)1.2c, whereas Galphai/o-coupled M2 and M4 receptors were ineffective. Channel inhibition through M1 receptors was studied in detail and was found to be kinetically slow, voltage-independent, and pertussis toxin-insensitive. Slow inhibition of Ca(V)1.2c was blocked by coexpressing RGS2 or RGS3T or by intracellular dialysis with antibodies directed against Galphaq/11. In contrast, inhibition was not reduced by coexpressing betaARK1ct or Galphat. These results indicate that slow inhibition required signaling by Galphaq/11, but not Gbetagamma, subunits. Slow inhibition did not require Ca(2+) transients or Ca(2+) influx through Ca(V)1.2c channels. Additionally, slow inhibition was insensitive to pharmacological inhibitors of phospholipases, protein kinases, and protein phosphatases. Intracellular BAPTA prevented slow inhibition via a mechanism other than Ca(2+) chelation. The cardiac splice-variant of Ca(V)1.2 (Ca(V)1.2a) and a splice-variant of the neuronal/neuroendocrine Ca(V)1.3 channel also appeared to undergo slow muscarinic inhibition. Thus, slow muscarinic inhibition may be a general characteristic of L-type channels having widespread physiological significance.  相似文献   

6.
In response to herbivore (Spodoptera littoralis) attack, lima bean (Phaseolus lunatus) leaves produced hydrogen peroxide (H(2)O(2)) in concentrations that were higher when compared to mechanically damaged (MD) leaves. Cellular and subcellular localization analyses revealed that H(2)O(2) was mainly localized in MD and herbivore-wounded (HW) zones and spread throughout the veins and tissues. Preferentially, H(2)O(2) was found in cell walls of spongy and mesophyll cells facing intercellular spaces, even though confocal laser scanning microscopy analyses also revealed the presence of H(2)O(2) in mitochondria/peroxisomes. Increased gene and enzyme activations of superoxide dismutase after HW were in agreement with confocal laser scanning microscopy data. After MD, additional application of H(2)O(2) prompted a transient transmembrane potential (V(m)) depolarization, with a V(m) depolarization rate that was higher when compared to HW leaves. In transgenic soybean (Glycine max) suspension cells expressing the Ca(2+)-sensing aequorin system, increasing amounts of added H(2)O(2) correlated with a higher cytosolic calcium ([Ca(2+)](cyt)) concentration. In MD and HW leaves, H(2)O(2) also triggered the increase of [Ca(2+)](cyt), but MD-elicited [Ca(2+)](cyt) increase was more pronounced when compared to HW leaves after addition of exogenous H(2)O(2). The results clearly indicate that V(m) depolarization caused by HW makes the membrane potential more positive and reduces the ability of lima bean leaves to react to signaling molecules.  相似文献   

7.
Using a new fluorescence imaging technique, LAMP, we recently reported that Ca(2+) influx through store operated Ca(2+) channels (SOCs) strongly inhibits cell coupling in primary human fibroblasts (HF) expressing Cx43. To understand the mechanism of inhibition, we studied the involvement of cytosolic pH (pH(i)) and Ca(2+)([Ca(2+)](i)) in the process by using fluorescence imaging and ion clamping techniques. During the capacitative Ca(2+) influx, there was a modest decline of pH(i) measured by BCECF. Decreasing pH(i) below neutral using thioacetate had little effect by itself on cell coupling, and concomitant pH(i) drop with thioacetate and bulk [Ca(2+)(i) rise with ionomycin was much less effective in inhibiting cell coupling than Ca(2+) influx. Moreover, clamping pH(i) with a weak acid and a weak base during Ca(2+) influx largely suppressed bulk pH(i) drop, yet the inhibition of cell coupling was not affected. In contrast, buffering [Ca(2+)(i) with BAPTA, but not EGTA, efficiently prevented cell uncoupling by Ca(2+) influx. We concluded that local Ca(2+) elevation subjacent to the plasma membrane is the primary cause for closing Cx43 channels during capacitative Ca(2+) influx. To assess how Ca(2+) influx affects junctional coupling mediated by other types of connexins, we applied the LAMP assay to Hela cells expressing Cx26. Capacitative Ca(2+) influx also caused a strong reduction of cell coupling, suggesting that the inhibitory effect by Ca(2+) influx may be a more general phenomenon.  相似文献   

8.
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from 0.5 to 15 mM led to the well-known hyperpolarization of DeltaPsi and ATP-dependent lowering of [Ca(2+)](c). However, as soon as [Ca(2+)](c) rose due to the opening of voltage-dependent Ca(2+) channels, DeltaPsi depolarized and thereafter oscillations in [Ca(2+)](c) were parallel to oscillations in DeltaPsi. A depolarization or oscillations of DeltaPsi cannot be evoked by a substimulatory glucose concentration, but Ca(2+) influx provoked by 30 mM KCl was followed by a depolarization of DeltaPsi. The following feedback loop is suggested: Glucose metabolism via mitochondrial ATP production and closure of K(+)(ATP) channels induces an increase in [Ca(2+)](c). The rise in [Ca(2+)](c) in turn decreases ATP synthesis by depolarizing DeltaPsi, thus transiently terminating Ca(2+) influx.  相似文献   

9.
Depolymerization of the actin cytoskeleton may liberate Ca2+ from InsP3-sensitive stores in some cell types, including starfish oocytes, while inhibiting Ca2+ influx in others. However, no information is available on the modulation of membrane potential (V(m)) by actin. The present study was aimed to ascertain whether the widely employed actin depolymerizing drug, latrunculin A (Lat A), affects V(m) in mature oocytes of the starfish Astropecten aranciacus. Lat A induced a membrane depolarization which was mimicked by cytochalasin D, another popular actin disruptor, and prevented by jasplakinolide, a stabilizer of the actin network. Lat A-elicited depolarization consisted in a positive shift in V(m) which reached the threshold of activation of voltage-gated Ca2+ channels (VGCC), thus triggering an action potential. Lat A-promoted depolarization lacked the action potential in Ca2+-free sea water, while it was abolished upon removal of external Na+. Moreover, membrane depolarization was prevented by pre-injection of BAPTA and heparin, but not ryanodine. These data indicate that Lat A induces a membrane depolarization by releasing Ca2+ from InsP3Rs. The Ca2+ signal in turn activates a Ca2+-dependent Na+ entry, which causes the positive shift in V(m) and stimulates the VGCC.  相似文献   

10.
Voltage-dependent Ca(2+) (Ca(V)1.2) channels are the primary Ca(2+) influx pathway in arterial smooth muscle cells and are essential for contractility regulation by a variety of stimuli, including intravascular pressure. Arterial smooth muscle cell Ca(V)1.2 mRNA is alternatively spliced at exon 1 (e1), generating e1b or e1c variants, with e1c exhibiting relatively smooth muscle-specific expression in the cardiovascular system. Here, we examined physiological functions of Ca(V)1.2e1 variants and tested the hypothesis that targeting Ca(V)1.2e1 modulates resistance size cerebral artery contractility. Custom antibodies that selectively recognize Ca(V)1.2 channel proteins containing sequences encoded by either e1b (Ca(V)1.2e1b) or e1c (Ca(V)1.2e1c) both detected Ca(V)1.2 in rat and human cerebral arteries. shRNA targeting e1b or e1c reduced expression of that Ca(V)1.2 variant, induced compensatory up-regulation of the other variant, decreased total Ca(V)1.2, and reduced intravascular pressure- and depolarization-induced vasoconstriction. Ca(V)1.2e1b and Ca(V)1.2e1c knockdown reduced whole cell Ca(V)1.2 currents, with Ca(V)1.2e1c knockdown most effectively reducing total Ca(V)1.2 and inducing the largest vasodilation. Knockdown of α(2)δ-1, a Ca(V)1.2 auxiliary subunit, reduced surface expression of both Ca(V)1.2e1 variants, inhibiting Ca(V)1.2e1c more than Ca(V)1.2e1b. e1b or e1c overexpression reduced Ca(V)1.2 surface expression and whole cell currents, leading to vasodilation, with e1c overexpression inducing the largest effect. In summary, data indicate that arterial smooth muscle cells express Ca(V)1.2 channels containing e1b or e1c-encoded N termini that contribute to Ca(V)1.2 surface expression, α(2)δ-1 preferentially traffics the Ca(V)1.2e1c variant to the plasma membrane, and targeting of Ca(V)1.2e1 message or the Ca(V)1.2 channel proximal N terminus induces vasodilation.  相似文献   

11.
The phasic contraction to phenylephrine of the rat isolated portal vein was investigated using functional studies. Phasic contractions to phenylephrine and caffeine could be produced after several minutes in Ca(2+)-free Krebs solution, which were inhibited by cyclopiazonic acid or ryanodine. The phenylephrine and caffeine contractions were abolished, however, within 10 min in Ca(2+)-free Krebs solution and by nifedipine. This indicated the Ca(2+) stores were depleted in the absence of Ca(2+) influx through voltage-gated channels. The phasic contraction to phenylephrine was also abolished by niflumic acid even in Ca(2+)-free Krebs solution. This showed that the response depended on intracellular Ca(2+) release stimulated directly by depolarization, resulting from opening of Ca(2+)-activated Cl(-) channels, but did not require Ca(2+) influx. In support of this, K(+)-induced phasic contractions were also produced in Ca(2+)-free Krebs solution. The phenylephrine but not K(+)-induced phasic contractions in Ca(2+)-free Krebs solution were inhibited by ryanodine or cyclopiazonic acid. This would be consistent with Ca(2+) release from more superficial intracellular stores (affected most by these agents), probably by inositol 1,4,5-trisphospate, being required to stimulate the phenylephrine depolarization.  相似文献   

12.
The effect of abiotic stress responses on Potato virus A (PVA; genus Potyvirus) infection was studied. Salt, osmotic and wounding stress all increased PVA gene expression in infected Nicotiana benthamiana leaves. According to the literature, an early response to these stresses is an elevation in cytosolic Ca(2+) concentration. The infiltration of 0.1 m CaCl(2) into the infected leaf area enhanced the translation of PVA RNA, and this Ca(2+) -induced effect was more profound than that induced solely by osmotic stress. The inhibition of voltage-gated Ca(2+) channels within the plasma membrane abolished the Ca(2+) effect, suggesting that Ca(2+) had to be transported into the cytosol to affect viral gene expression. This was also supported by a reduced wounding effect in the presence of the Ca(2+) -chelating agent ethylene glycol tetraacetic acid (EGTA). In the absence of viral replication, the intense synthesis of viral proteins in response to Ca(2+) was transient. However, a Ca(2+) pulse administered at the onset of wild-type PVA infection enhanced the progress of infection within the locally infected leaf, and the virus appeared earlier in the systemic leaves than in the control plants. This suggests that the cellular environment was thoroughly modified by the Ca(2+) pulse to support viral infection. One message of this study is that the sensing of abiotic stress, which leads to cellular responses, probably via Ca(2+) signalling, associated with enhanced virus infection, may lead to higher field crop losses. Therefore, the effect of abiotic stress on plant viral infection warrants further analysis.  相似文献   

13.
14.
Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca(2+) signaling is crucial for stimulation of IEC migration after wounding, and induced translocation of stromal interaction molecule 1 (STIM1) to the plasma membrane activates TRPC1-mediated Ca(2+) influx and thus enhanced restitution. Here, we show that polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca(2+) signaling by altering the ratio of STIM1 to STIM2. Increasing cellular polyamines by ectopic overexpression of the ornithine decarboxylase (ODC) gene stimulated STIM1 but inhibited STIM2 expression, whereas depletion of cellular polyamines by inhibiting ODC activity decreased STIM1 but increased STIM2 levels. Induced STIM1/TRPC1 association by increasing polyamines enhanced Ca(2+) influx and stimulated epithelial restitution, while decreased formation of the STIM1/TRPC1 complex by polyamine depletion decreased Ca(2+) influx and repressed cell migration. Induced STIM1/STIM2 heteromers by polyamine depletion or STIM2 overexpression suppressed STIM1 membrane translocation and inhibited Ca(2+) influx and epithelial restitution. These results indicate that polyamines differentially modulate cellular STIM1 and STIM2 levels in IECs, in turn controlling TRPC1-mediated Ca(2+) signaling and influencing cell migration after wounding.  相似文献   

15.
The objective of this study was to examine the role of the actin cytoskeleton in the development of pressure-induced membrane depolarization and Ca(2+) influx underlying myogenic constriction in cerebral arteries. Elevating intraluminal pressure from 10 to 60 mmHg induced membrane depolarization, increased intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) and elicited myogenic constriction in both intact and denuded rat posterior cerebral arteries. Pretreatment with cytochalasin D (5 microM) or latrunculin A (3 microM) abolished constriction but enhanced the [Ca(2+)](i) response; similarly, acute application of cytochalasin D to vessels with tone, or in the presence of 60 mM K(+), elicited relaxation accompanied by an increase in [Ca(2+)](i). The effects of cytochalasin D were inhibited by nifedipine (3 microM), demonstrating that actin cytoskeletal disruption augments Ca(2+) influx through voltage-sensitive L-type Ca(2+) channels. Finally, pressure-induced depolarization was enhanced in the presence of cytochalasin D, further substantiating a role for the actin cytoskeleton in the modulation of ion channel function. Together, these results implicate vascular smooth muscle actin cytoskeletal dynamics in the control of cerebral artery diameter through their influence on membrane potential as well as via a direct effect on L-type Ca(2+) channels.  相似文献   

16.
The role of 5-hydroxytryptamine (5-HT, serotonin) in the control of leech behavior is well established and has been analyzed extensively on the cellular level; however, hitherto little is known about the effect of 5-HT on the cytosolic free calcium concentration ([Ca(2+)](i)) in leech neurons. As [Ca(2+)](i) plays a pivotal role in numerous cellular processes, we investigated the effect of 5-HT on [Ca(2+)](i) (measured by Fura-2) in identified leech neurons under different experimental conditions, such as changed extracellular ion composition and blockade of excitatory synaptic transmission. In pressure (P), lateral nociceptive (N1), and Leydig neurons, 5-HT induced a [Ca(2+)](i) increase which was predominantly due to Ca(2+) influx since it was abolished in Ca(2+)-free solution. The 5-HT-induced Ca(2+) influx occurred only if the cells depolarized sufficiently, indicating that it was mediated by voltage-dependent Ca(2+) channels. In P and N1 neurons, the membrane depolarization was due to Na(+) influx through cation channels coupled to 5-HT receptors, whereby the dose-dependency suggests an involvement in excitatory synaptic transmission. In Leydig neurons, 5-HT receptor-coupled cation channels seem to be absent. In these cells, the membrane depolarization activating the voltage-dependent Ca(2+) channels was evoked by 5-HT-triggered excitatory glutamatergic input. In Retzius, anterior pagoda (AP), annulus erector (AE), and median nociceptive (N2) neurons, 5-HT had no effect on [Ca(2+)](i).  相似文献   

17.
Neuronal cannabinoid receptors (CB(1)) are coupled to inhibition of voltage-sensitive Ca(2+) channels (VSCCs) in several cell types. The purpose of these studies was to characterize the interaction between endogenous CB(1) receptors and VSCCs in cerebellar granule neurons (CGN). Ca(2+) transients were evoked by KCl-induced depolarization and imaged using fura-2. The CB(1) receptor agonists CP55940, Win 55212-2 and N-arachidonylethanolamine (anandamide) produced concentration-related decreases in peak amplitude of the Ca(2+) response and total Ca(2+) influx. Pre-treatment of CGN with pertussis toxin abolished agonist-mediated inhibition. The inhibitory effect of Win 55212-2 on Ca(2+) influx was additive with inhibition produced by omega-agatoxin IVA and nifedipine but not with omega-conotoxin GVIA, indicating that N-type VSCCs are the primary effector. Paradoxically, the CB(1) receptor antagonist, SR141716, also inhibited KCl-induced Ca(2+) influx into CGN in a concentration-related manner. SR141716 inhibition was pertussis toxin-insensitive and was not additive with the inhibition produced by Win 55212-2. Confocal imaging of CGN in primary culture demonstrate a high density of CB(1) receptor expression on CGN plasma membranes, including the neuritic processes. These data demonstrate that the CB(1) receptor is highly expressed by CGN and agonists serve as potent and efficacious inhibitory modulators of Ca(2+) influx through N-type VSCC.  相似文献   

18.
Kang TM  Park MK  Uhm DY 《Life sciences》2003,72(13):1467-1479
We have investigated the effects of hypoxia and mitochondria inhibitors on the capacitative Ca(2+) entry (CCE) in cultured smooth muscle cells from rabbit small pulmonary arteries. Cyclopiazonic acid (CPA) depleted Ca(2+) from sarcoplasmic reticulum (SR) in Ca(2+)-free medium and subsequent addition of Ca(2+) led to the nifedipine-insensitive, La(3+)-sensitive Ca(2+) influx. The presence of CCE was further verified by the measurement of unidirectional Mn(2+) influx. During the decay phase of the CCE-induced [Ca(2+)]c transients, hypoxia (P(O2) < 50 mmHg) and the mitochondria inhibitor FCCP reversibly increased [Ca(2+)]c, that is La(3+)-sensitive. Once SR is depleted by CPA, subsequent treatment of FCCP slowed the decay of CCE-induced [Ca(2+)]c transients but it did not attenuate Mn(2+) influx. Mitochondrial uptake of incoming Ca(2+) through CCE was demonstrated by additional increase in [Ca(2+)]c with Ca(2+) ionophore after terminating CCE. Together, it is suggested that the augmentation of CCE-induced [Ca(2+)]c transients by hypoxia and FCCP reflects a net gain of [Ca(2+)]c by the inhibition of mitochondrial Ca(2+) uptake.  相似文献   

19.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

20.
The opening of mitochondrial membrane permeability transition (MPT) pores, which results in a cyclosporin A (CsA)-sensitive and Ca(2+)-dependent dissipation of the membrane potential (delta psi) and swelling (classical MPT), has been postulated to play an important role in the release of cytochrome c (Cyt.c) and also in apoptotic cell death. Recently, it has been reported that CsA-insensitive or Ca(2+)-independent MPT can be classified as non-classic MPT. Therefore, we studied the effects of apoptosis-inducing agents on mitochondrial functions with respect to their CsA-sensitivity and Ca(2+)-dependency. CsA-sensitive mitochondrial swelling, depolarization, and the release of Ca2+ and Cyt.c were induced by low concentrations of arachidonic acid, triiodothyronine (T3), or 6-hydroxdopamine but not by valinomycin and high concentrations of the fatty acid or T3. Fe2+/ADP and 2,2,-azobis-(2-amidinopropane) dihydrochloride (AAPH) induced swelling of mitochondria and the release of Ca2+ and Cyt.c were not coupled with depolarization or CsA-sensitivity while dibucaine-induced swelling occurred without depolarization, Cyt.c-release or by a CsA-sensitive mechanism. A protonophoric FCCP and SF-6847 induced depolarization and Ca(2+)-release occurred in a CsA-insensitive manner and failed to stimulate the release of Cyt.c. These results indicate that ambient conditions of mitochondria can greatly influence the state of membrane stability and that Cyt.c release may occur not only via a CsA-sensitive MPT but also by way of a CsA-insensitive membrane deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号