首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that endoplasmic reticulum alpha-glucosidase inhibitors have antiviral effects on dengue (DEN) virus. We found that glucosidase inhibition strongly affects productive folding pathways of the envelope glycoproteins prM (the intracellular glycosylated precursor of M [membrane protein]) and E (envelope protein): the proper folding of prM bearing unprocessed N-linked oligosaccharide is inefficient, and this causes delayed formation of prME heterodimer. The complexes formed between incompletely folded prM and E appear to be unstable, leading to a nonproductive pathway. Inhibition of alpha-glucosidase-mediated N-linked oligosaccharide trimming may thus prevent the assembly of DEN virus by affecting the early stages of envelope glycoprotein processing.  相似文献   

2.
The mechanism for efficient nucleocapsid (NC) uptake into flavivirus particles which form by budding through the membranes of the endoplasmic reticulum (ER) was investigated by using Murray Valley encephalitis virus as a model. Budding of flavivirus membranes is driven by the viral transmembrane proteins prM and E independently of NC interaction. We show that control of signalase cleavage of the multimembrane-spanning flavivirus polyprotein by the catalytic function of the viral protease is critical for efficient virus morphogenesis. In wild-type virus, signalase cleavage of prM remains inefficient until cleavage of capsid at the cytosolic side of the signal sequence separating the two proteins has occurred. This obligatory sequence of cleavages was uncoupled in a mutant virus with the consequence of greatly reduced incorporation of NC into budding membranes and augmented release of NC-free virus-like particles. Efficient signalase cleavage of prM in the mutant virus resulted in partial inhibition of cleavage of capsid by the viral NS2B-3 protease. Our results support a model for flavivirus morphogenesis involving temporal and spatial coordination of NC assembly and envelopment by regulated cleavages of an ER membrane-spanning capsid-prM intermediate.  相似文献   

3.
Proteolytic activation of tick-borne encephalitis virus by furin.   总被引:19,自引:15,他引:4       下载免费PDF全文
Flaviviruses are assembled intracellularly in an immature form containing heterodimers of two envelope proteins, E and prM. Shortly before the virion exits the cell, prM is cleaved by a cellular enzyme, and this processing step can be blocked by treatment with agents that raise the pH of exocytic compartments. We carried out in vivo and in vitro studies with tick-borne encephalitis (TBE) virus to investigate the possible role of furin in this process as well as the functional consequences of prM cleavage. We found that prM in immature virions can be correctly cleaved in vitro by recombinant bovine furin but that efficient cleavage occurs only after exposure of the virion to mildly acidic pH. The data suggest that exposure to an acidic environment induces an irreversible structural change that renders the cleavage site accessible to the enzyme. Cleavage by furin in vitro resulted in biological activation, as shown by a 100-fold increase in specific infectivity, the acquisition of membrane fusion and hemagglutination activity, and the ability of the envelope proteins to undergo low-pH-induced structural rearrangements characteristic of mature virions. In vivo, prM cleavage was blocked by a furin inhibitor, and infection of the furin-deficient cell line LoVo yielded only immature virions, suggesting that furin is essential for cleavage activation of flaviviruses.  相似文献   

4.

Background

Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E.

Methodology/Principal Findings

We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes. A stable HeLa cell line expressing DV1 prME was established (HeLa-prME) and RSPs were analyzed by immunofluorescence and transmission electron microscopy. We found that E protein is mainly present in the endoplasmic reticulum (ER) where assembly of RSPs could be observed. Biochemical characterization of DV1 RSPs secretion revealed both prM protein cleavage and homodimerization of E proteins before their release into the supernatant, indicating that RSPs undergo a similar maturation process as dengue virus. Pulse chase experiment showed that 8 hours are required for the secretion of DV1 RSPs. We have used HeLa-prME to develop a semi-quantitative assay and screened a human siRNA library targeting genes involved in membrane trafficking. Knockdown of 23 genes resulted in a significant reduction in DV RSP secretion, whereas for 22 others we observed an increase of RSP levels in cell supernatant.

Conclusions/Significance

Our data describe the efficient production of RSPs containing native prM and E envelope proteins for all dengue serotypes. Dengue RSPs and corresponding producing cell lines are safe and novel tools that can be used in the study of viral egress as well as in the development of vaccine and drugs against dengue virus.  相似文献   

5.
6.
It is believed that flavivirus assembly occurs by intracellular budding of the nucleocapsid into the lumen of the endoplasmic reticulum (ER). Recombinant expression of tick-borne encephalitis (TBE) virus envelope proteins prM and E in mammalian cells leads to their incorporation into enveloped recombinant subviral particles (RSPs), which have been used as a model system for studying assembly and entry processes and are also promising vaccine candidates. In this study, we analyzed the formation and secretion of TBE virus RSPs and of a membrane anchor-free E homodimer in mammalian cells. Immunofluorescence microscopy showed that E was accumulated in the lumen of the ER. RSPs were observed by electron microscopy in the rough and smooth ER and in downstream compartments of the secretory pathway. About 75% of the particles appeared to be of the size expected for RSPs (about 30 nm in diameter), but a number of larger particles and tubular structures were also observed in these compartments. Secretion of membrane anchor-free E dimers was detected 30 min after synthesis of prM and E, and secretion of RSPs was detected 1 h after synthesis of prM and E. We also found that the presence of the single N-linked oligosaccharide side chain on the E protein and its trimming by glucosidases was necessary for secretion of RSPs and truncated E dimers. Our results suggest that incorporation of prM and E into RSPs occurs at the ER membrane without other viral elements being required, followed by rapid transport along the compartments of the secretory pathway and secretion. Moreover, the carbohydrate side chain of E is involved in at least one assembly or transport step.  相似文献   

7.
A quantitative study was performed to investigate the requirements for secretion of recombinant soluble and particulate forms of the envelope glycoprotein E of tick-borne encephalitis (TBE) virus. Full-length E and a carboxy terminally truncated anchor-free form were expressed in COS cells in the presence and absence of prM, the precursor of the viral membrane protein M. Formation of a heteromeric complex with prM was found to be necessary for efficient secretion of both forms of E, whereas only low levels of anchor-free E were secreted in the absence of prM. The prM-mediated transport function could also be provided by coexpression of prM and E from separate constructs, but a prM-to-E ratio of greater than 1:1 did not further enhance secretion. Full-length E formed stable intracellular heterodimers with prM and was secreted as a subviral particle, whereas anchor-free E was not associated with particles and formed a less stable complex with prM, suggesting that prM interacts with both the ectodomain and anchor region of E.  相似文献   

8.
Flavivirus pre-membrane (prM) protein is important for proper folding and secretion of envelope (E) protein. However, other non-structural functions of prM protein in the context of virus life-cycle are poorly known. In this study, we aimed to elucidate if dengue virus (DV) prM protein interacts with host proteins and contributes to viral pathogenesis by screening human liver cDNA yeast-two-hybrid library. Our study identified vacuolar ATPase (V-ATPase) as a novel interacting partner of DV prM protein and aminoacid residues from 76 to 80 of prM protein are crucial to mediate V-ATPase binding. We showed that V-ATPase plays an important role in mediating low-pH dependent entry of DV. The biological significance of prM-V-ATPase interaction is also elucidated and we have shown that this association is critical to influence efficient virus egression. This study highlighted for the first time that flavivirus prM protein interacts with V-ATPase and V-ATPase mediates both entry and egression of DV.  相似文献   

9.
10.
Flaviviruses assemble in the endoplasmic reticulum by a mechanism that appears to be driven by lateral interactions between heterodimers of the envelope glycoproteins E and prM. Immature intracellular virus particles are then transported through the secretory pathway and converted to their mature form by cleavage of the prM protein by the cellular protease furin. Earlier studies showed that when the prM and E proteins of tick-borne encephalitis virus are expressed together in mammalian cells, they assemble into membrane-containing, icosahedrally symmetrical recombinant subviral particles (RSPs), which are smaller than whole virions but retain functional properties and undergo cleavage maturation, yielding a mature form in which the E proteins are arranged in a regular T = 1 icosahedral lattice. In this study, we generated immature subviral particles by mutation of the furin recognition site in prM. The mutation resulted in the secretion of two distinct size classes of particles that could be separated by sucrose gradient centrifugation. Electron microscopy showed that the smaller particles were approximately the same size as the previously described mature RSPs, whereas the larger particles were approximately the same size as the virus. Particles of the larger size class were also detected with a wild-type construct that allowed prM cleavage, although in this case the smaller size class was far more prevalent. Subtle differences in endoglycosidase sensitivity patterns suggested that, in contrast to the small particles, the E glycoproteins in the large subviral particles and whole virions might be in nonequivalent structural environments during intracellular transport, with a portion of them inaccessible to cellular glycan processing enzymes. These proteins thus appear to have the intrinsic ability to form alternative assembly products that could provide important clues about the role of lateral envelope protein interactions in flavivirus assembly.  相似文献   

11.
Langat (LGT) virus M protein has been generated in a recombinant system. Antiserum raised against the LGT virus M protein neutralizes tick-borne encephalitis serocomplex flaviviruses but not mosquito-borne flaviviruses, indicating that the M protein is exposed on the surface of virions. The antiserum recognizes intracellular LGT virus prM/M and binds to prM and M in Western blots of whole-cell lysates and purified virus, respectively. These data suggest that the prM and M proteins are structurally similar under native conditions and support the hypothesis that the "pr" portion of prM facilitates proper folding of the M protein for expression on the virion surface.  相似文献   

12.
RNA replicons derived from flavivirus genomes show considerable potential as gene transfer and immunization vectors. A convenient and efficient encapsidation system is an important prerequisite for the practical application of such vectors. In this work, tick-borne encephalitis (TBE) virus replicons and an appropriate packaging cell line were constructed and characterized. A stable CHO cell line constitutively expressing the two surface proteins prM/M and E (named CHO-ME cells) was generated and shown to efficiently export mature recombinant subviral particles (RSPs). When replicon NdDeltaME lacking the prM/M and E genes was introduced into CHO-ME cells, virus-like particles (VLPs) capable of initiating a single round of infection were released, yielding titers of up to 5 x 10(7)/ml in the supernatant of these cells. Another replicon (NdDeltaCME) lacking the region encoding most of the capsid protein C in addition to proteins prM/M and E was not packaged by CHO-ME cells. As observed with other flavivirus replicons, both TBE virus replicons appeared to exert no cytopathic effect on their host cells. Sedimentation analysis revealed that the NdDeltaME-containing VLPs were physically distinct from RSPs and similar to infectious virions. VLPs could be repeatedly passaged in CHO-ME cells but maintained the property of being able to initiate only a single round of infection in other cells during these passages. CHO-ME cells can thus be used both as a source for mature TBE virus RSPs and as a safe and convenient replicon packaging cell line, providing the TBE virus surface proteins prM/M and E in trans.  相似文献   

13.
A chimeric flavivirus infectious cDNA was constructed by exchanging the premembrane (prM) and envelope (E) genes of the yellow fever virus vaccine strain 17D (YF17D) with the corresponding genes of Modoc virus (MOD). This latter virus belongs to the cluster of the "not-known vector" flaviviruses and is, unlike YF17D, neuroinvasive in SCID mice. Replication of in vitro-transcribed RNA from this chimeric flavivirus was shown by [(3)H]uridine labeling and RNA analysis. Expression of the MOD prM and E proteins was monitored by radioimmunoprecipitation and revealed that the MOD proteins were correctly and efficiently produced from the chimeric precursor protein. The MOD E protein was shown to be N-linked glycosylated, whereas prM, as predicted from the genome sequence, did not contain N-linked carbohydrates. In Vero cells, the chimeric virus replicated with a similar efficiency as the parental viruses, although it formed smaller plaques than YF17D and MOD. In SCID mice that had been infected intraperitoneally with the chimeric virus, the viral load increased steadily until death. The MOD/YF virus, like MOD from which it had acquired the prM and E structural proteins, but unlike YF, proved neuroinvasive in SCID mice. Animals developed neurological symptoms about 15 days after inoculation and died shortly thereafter. The distribution of MOD/YF RNA in the brain of infected mice was similar to that observed in MOD-infected mice. The observations provide compelling evidence that the determinants of neuroinvasiveness of flaviviruses are entirely located in the envelope proteins prM and E.  相似文献   

14.
The hepatitis C virus (HCV) glycoproteins (E1 and E2) are released from the polyprotein by signal peptidase-mediated cleavage and interact to form a heterodimer. Since properly folded subunits are usually required for specific recognition and stable oligomer formation, the rate of stable E1E2 complex formation, which is low, may be limited by the rate of HCV E1 and/or E2 folding. In this study, the folding of the HCV E1 and E2 glycoproteins was monitored by observing the kinetics of intramolecular disulfide bond formation. The association/dissociation of E1 and E2 with calnexin was also examined, since this molecular chaperone appears to play a major role in quality control via retention of incompletely folded or misfolded proteins in the endoplasmic reticulum. Our results indicate that the disulfide-dependent folding of E2 occurs rapidly and appears to be complete upon cleavage of the precursor E2-NS2. In contrast, folding of E1 is slow (> 1 h), suggesting that this step may be rate limiting for E1E2 oligomerization. Both HCV glycoproteins associated rapidly with calnexin, but dissociation was slow, consistent with the slow folding and assembly of E1E2 glycoprotein complexes. These results suggest a role for prolonged association with calnexin in the folding and assembly of HCV glycoprotein heterodimer complexes.  相似文献   

15.
The role of the Japanese encephalitis virus (JEV) premembrane (prM) protein in maturation of the envelope (E) glycoprotein was evaluated by using recombinant vaccinia viruses encoding E in the presence (vP829) or absence (vP658) of prM. Immunofluorescence analyses showed that E appeared to be localized in the endoplasmic reticulum of cells infected with JEV, vP829, or vP658. However, reactivity with monoclonal antibodies and behavior in Triton X-114 indicated that E produced in the absence of prM behaved abnormally. Furthermore, E produced in the presence of prM by recombinant vaccinia viruses could be incorporated into flavivirus pseudotypes, whereas E synthesized in the absence of prM could not. These results demonstrate that cosynthesis of prM is required for proper folding, membrane association, and assembly of the flavivirus E protein.  相似文献   

16.
17.
Dengue virus (DENV) is a major mosquito-borne pathogen infecting up to 100 million people each year; so far no effective treatment or vaccines are available. Recently, highly cross-reactive and infection-enhancing pre-membrane (prM)-specific antibodies were found to dominate the anti-DENV immune response in humans, raising concern over vaccine candidates that contain native dengue prM sequences. In this study, we have isolated a broadly cross-reactive prM-specific antibody, D29, during a screen with a non-immunized human Fab-phage library against the four serotypes of DENV. The antibody is capable of restoring the infectivity of virtually non-infectious immature DENV (imDENV) in FcγR-bearing K562 cells. Remarkably, D29 also cross-reacted with a cryptic epitope on the envelope (E) protein located to the DI/DII junction as evidenced by site-directed mutagenesis. This cryptic epitope, while inaccessible to antibody binding in a native virus particle, may become exposed if E is not properly folded. These findings suggest that generation of anti-prM antibodies that enhance DENV infection may not be completely avoided even with immunization strategies employing E protein alone or subunits of E proteins.  相似文献   

18.
Folding of hepatitis C virus E1 glycoprotein in a cell-free system   总被引:4,自引:0,他引:4       下载免费PDF全文
The hepatitis C virus (HCV) envelope proteins, E1 and E2, form noncovalent heterodimers and are leading candidate antigens for a vaccine against HCV. Studies in mammalian cell expression systems have focused primarily on E2 and its folding, whereas knowledge of E1 folding remains fragmentary. We used a cell-free in vitro translation system to study E1 folding and asked whether the flanking proteins, Core and E2, influence this process. We translated the polyprotein precursor, in which the Core is N-terminal to E1, and E2 is C-terminal, and found that when the core protein was present, oxidation of E1 was a slow, E2-independent process. The half-time for E1 oxidation was about 5 h in the presence or absence of E2. In contrast with previous reports, analysis of three constructs of different lengths revealed that the E2 glycoprotein undergoes slow oxidation as well. Unfolded or partially folded E1 bound to the endoplasmic reticulum chaperones calnexin and (with lower efficiency) calreticulin, whereas no binding to BiP/GRP78 or GRP94 could be detected. Release from calnexin and calreticulin was used to assess formation of mature E1. When E1 was expressed in the absence of Core and E2, its oxidation was impaired. We conclude that E1 folding is a process that is affected not only by E2, as previously shown, but also by the Core. The folding of viral proteins can thus depend on complex interactions between neighboring proteins within the polyprotein precursor.  相似文献   

19.
Previous work has shown that the Sindbis structural proteins, core, the internal protein, and PE2 and E1, the integral membrane glycoproteins are synthesized as a polyprotein from a 26S mRNA; core PE2 and E1 are derived by proteolytic cleavage of a nascent chain. Newly synthesized core protein remains on the cytoplasmic side of the endoplasmic reticulum while newly synthesized PE2 and E1 are inserted into the lipid bilayer, presumably via their amino-termini. PE2 and E1 are glycosylated as nascent chains. Here, we examine a temperature-sensitive mutant of Sindbis virus which fails to cleave the structural proteins, resulting in the production of a polyprotein of 130,000 mol wt in which the amino-termini of PE2 and E1 are internal to the protein. Although the envelope sequences are present in this protein, it is not inserted into the endoplasmic reticulum bilayer, but remains on the cytoplasmic side as does the core protein in cells infected with wild-type Sindbis virus. We have also examined the fate of PE2 and E1 in cells treated with tunicamycin, an inhibitor of glycosylation. Unglycosylated PE2 and E1 are inserted normally into the lipid bilayer as are the glycosylated proteins. These results are consistent with the notion that a specific amino-terminal sequence is required for the proper insertion of membrane proteins into the endoplasmic reticulum bilayer, but that glycosylation is not required for this insertion.  相似文献   

20.
The immature flavivirus particle contains two envelope proteins, prM and E, that are associated as a heterodimer. Virion morphogenesis of the flaviviruses occurs in association with endoplasmic reticulum (ER) membranes, suggesting that there should be accumulation of the virion components in this compartment. This also implies that ER localization signals must be present in the flavivirus envelope proteins. In this work, we looked for potential subcellular localization signals in the yellow fever virus envelope proteins. Confocal immunofluorescence analysis of the subcellular localization of the E protein in yellow fever virus-infected cells indicated that this protein accumulates in the ER. Similar results were obtained with cells expressing only prM and E. Chimeric proteins containing the ectodomain of CD4 or CD8 fused to the transmembrane domains of prM or E were constructed, and their subcellular localization was studied by confocal immunofluorescence and by analyzing the maturation of their associated glycans. Although a small fraction was detected in the ER-to-Golgi intermediate and Golgi compartments, these chimeric proteins were located mainly in the ER. The C termini of prM and E form two antiparallel transmembrane alpha-helices. Interestingly, the first transmembrane passage contains enough information for ER localization. Taken altogether, these data indicate that, besides their role as membrane anchors, the transmembrane domains of yellow fever virus envelope proteins are ER retention signals. In addition, our data show that the mechanisms of ER retention of the flavivirus and hepacivirus envelope proteins are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号