首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The influence of sapwood water content on the conductivity of sapwood to water was measured on stem sections of Pinus contorta. A reduction in relative water content from 100 to 90% caused permeability to fall to about 10% of the saturated value.
Pressure–volume curves of branchwood and stem sapwood of Pinus contorta and Picea sitchensis have been analysed to definè the tissue capacitance and the time constant and resistance for water movement between stored water and the functional xylem as functions of tissue water potential. Three phases in water loss were discernible. In the initial phase at high water potentials (> –0.5 MPa), the capacitance was large, the time constant long and the resistance to flow large in comparison with intermediate water potentials (−0.5 to −1.5 MPa). At still lower water potentials (−1.5 to −3.0 MPa), the time constant and resistance declined still further but the capacitance had a tendency to increase again, especially in the stemwood of Sitka spruce. Typical values in the second phase were for the time constant 5 s, for the resistance 4 × 10−13 N s m−5 and for the capacitance (change in relative water content per unit change in potential) 1×10−11 m3 Pa−1. These parameters define the availability of stored water and are being used in a dynamic model of water transport in trees.  相似文献   

2.
Abstract. 1. Adult female pine beauty moths, Panolis flammea (D & S), when given a choice of whole plants or needle pairs of four provenances of Lodgepole pine, Pinus contorta (Douglas), laid most eggs on that provenance on which the larvae attained their greatest growth rates.
2. When presented with a greater number of Lodgepole pine provenances and Pinus sylvestris L, P.flammea oviposition preferences reflected the trade-off between growth rate and survival.
3. There is some evidence to suggest that the moths are responding to the monoterpene composition of the plants.
4. Adult moths showed no preference for Lodgepole pine needles of a range of ages (1–4 years), ovipositing uniformly on all age classes.  相似文献   

3.
The relationships of guard cell ABA content to eight stress-related physiological parameters were determined on intact Vicia faba L. plants that were grown hydroponically with split-root systems. Continuous stress was imposed by the addition of PEG to part of the root system. The water potentials of roots sampled after the addition of PEG were 0.25 MPa lower than the water potentials of other roots of the same plant, which were similar to the roots of untreated plants. The leaflet water potentials of plants sampled within 2 h of stress imposition were similar to those of control plants. However, leaf conductance was lower in plants sampled after only 20 min of stress imposition, and the root- and leaflet apoplastic ABA concentrations of these plants were higher than those of untreated plants. As the essence of this report, there was a linear relationship between guard cell ABA content and leaf conductance. Leaflet apoplastic ABA concentrations <150 nM were also linearly related to leaf conductance, but higher leaflet apoplastic ABA concentration did not cause equally large further declines in leaf conductance. It is suggested that evaporation from guard cell walls caused ABA to accumulate in the guard cell apoplast and this pool was saturated at high leaflet apoplastic ABA concentrations.  相似文献   

4.
The water permeability of the leaves of three deciduous plants (Acer campestre, Fagus sylvatica, Quercus petraea) and two evergreen plants (Hedera helix, Ilex aquifolium) was analysed in order to assess its role as a mechanism of drought resistance. Cuticular permeances were determined by measurement of the water loss through adaxial, astomatous leaf surfaces. Minimum conductances after complete stomatal closure were obtained by leaf drying curves. The comparison of the water permeabilities determined with these two experimental systems revealed good agreement in the case of Acer, Fagus, Quercus, and Ilex. For Hedera the minimum conductance was 3-fold higher than the cuticular permeance indicating a significant contribution of residual stomatal transpiration. The leaf water potential was measured as a function of water content and analysed by pressure-volume curves. The influence of water potential as a component of the driving force for transpirational water loss was assessed in order to identify modifications of the cuticular barrier by the leaf water content. The ecophysiological meaning of the water relations parameters describing transpiration under drought conditions (cuticular transpiration, minimum transpiration, residual stomatal transpiration, effect of leaf water content on transpiration) and the water relations parameters derived from pressure-volume curves (osmotic potential at full saturation, turgor loss point, bulk modulus of elasticity) are discussed with regard to adaptations for drought resistance.  相似文献   

5.
RENARD  C.; FRANCOIS  J. 《Annals of botany》1985,55(6):869-879
The effects of increasing water stress on water relations, leafconductance, leaf extension and leaf rolling of Festuca arundinaceain sward (I m2) were investigated under wind tunnel conditions.The plants were grown in a container 60 cm deep and the experimentwas conducted over a 36 d period. Upon cessation of watering(day 11), leaf extension and conductance were affected. Within8 d, the onset of leaf rolling helped to reduce transpirationand to maintain leaf water potential. Nocturnal recovery of turgor potential helped in maintainingleaf extension at a moderate level and in the final 5 d waterand osmotic potentials dropped sharply as leaf rolling becamemore acute and leaf extension stopped. The grass combines various morphological and physiological mechanismsto prevent water losses and maintain growth. Festuca arundinacea, tall fescue, wind tunnel, water stress, water potential, osmotic potential, conductance, leaf rolling, leaf extension  相似文献   

6.
Both woody and herbaceous plant species are known to respond to wind loading, with consequences for growth and morphology. Wind has usually been classified as a mechanical stress which is detrimental to plant growth. Few experiments exist whereby plants and, in particular, woody species are exposed to wind, as opposed to mechanical perturbation by touching, flexing or shaking. Such experiments have always been short term and often carried out in wind tunnels in a controlled greenhouse environment. This study introduces an experiment to test the responses of Maritime pine (Pinus pinaster A?t.) seedlings to recurrent and short wind loading in the field, over two growing seasons. These experiments provide evidence that periodic short-term exposure to wind can induce phototropic responses in the early stage of pine seedlings' development. An interpretation is proposed in terms of efficiency to light tracking and hypotheses are discussed concerning the underlying physiological process.  相似文献   

7.
The extension growth of Festuca arundinacea was reduced by shaking,and the leaves formed during shaking were thinner and narrowerthan the controls. The response to shaking was modified by thenutritional status of the plant — shaken plants took upmore phosphorus from a phosphorus deficient soil than the controlsand this advantage seemed to offset the influence of shaking. Shaken plants displayed a higher stomatal conductance and alower water potential than the controls, though it was consideredthat the effect of shaking could not be attributed entirelyto differences in water potential. Festuca arundinacea Schreb., water potential, stomatal conductance, phosphorus, shaking  相似文献   

8.
The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [ Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m2 UV-BBE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants.  相似文献   

9.
A method for direct estimation of percentage apoplastic water volume (% APO) in conifer needles is described. The method presented here, and designated the pressure-needle (P-N) method, measures the relative water content of the needles to develop a curve similar to the pressure-volume (P-V) curve. P-V and P-N curves were developed for Picea pungens Engelm. cv. Hoopsi, Pinus sylvestris L., Abies gradis (Dougl.) L., and Pseudotsuga menziesii (Mirb) Franco. The % APO estimated by the two procedures varied as much as 2-fold, while other parameters were similar. The P-V method generated consistently higher and more variable % APO than the P-N method, due to the inclusion of the apoplastic water of the stem in the P-V method. For conifers, the P-N method offers a more accurate and precise method for determining % APO.  相似文献   

10.
This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response.  相似文献   

11.
Mycorrhizal and nonmycorrhizal Pinus halepensis plants were subjected to water stress by withholding irrigation for four months and then rehydrated for 30 d. Water stress affected plants growth and mycorrhizal association was unable to avoid the effects of drought on plant growth. However, when irrigation was re-established the increase in height, number of shoots, total dry mass, and chlorophyll content in the mycorrhizal plants were greater than in non-mycorrhizal plants. The decrease in soil water content decreased the leaf water potential, leaf pressure potential and stomatal conductance. These decreases were higher for nonmycorrhizal than for mycorrhizal plants, indicating that the mycorrhizal fungi permit a higher water uptake from the dry soils. The total content of inorganic solutes was not changed by presence of mycorrhizae.  相似文献   

12.
Abstract. Seedlings of Pinus radiata D. Don were grown in growth chambers for 22 weeks with two levels of phosphorus, under either well-watered or water-stressed conditions at CO2 concentrations of either 330 or 660mm3 dm?3. Plant growth, water use efficiency and conductance were measured and the relationship between these and needle photosynthetic capacity, water use efficiency and conductance was determined by gas exchange at week 22. Phosphorus deficiency decreased growth and foliar surface area at both CO2concentrations; however, it only reduced the maximum photosynthetic rates of the needles at 660 mm3 CO2 dm?3 (plants grown and measured at the same CO2 concentration). Water stress reduced growth and foliar surface area at both CO2 concentrations. Increases in needle photosynthetic rates appeared to be partly responsible for the increased growth at high CO2 where phosphorus was adequate. This effect was amplified by accompanying increases in needle production. Phosphorus deficiency inhibited these responses because it severely impaired needle photosynthetic function. The relative increase in growth in response to high CO2 was higher in the periodically water-stressed plants. This was not due to the maintenance of cell volume during drought. Plant water use efficiency was increased by CO2 enrichment due to an increase in dry weight rather than a decrease in shoot conductance and, therefore, transpirational water loss. Changes in needle conductance and water use efficiency in response to high CO2 were generally in the same direction as those at the whole plant level. If the atmospheric CO2 level reaches the predicted concentration of 660 mm3 dm?3 by the end of next Century, then the growth of P. radiata will only be increased in areas where phosphorus nutrition is adequate. Growth will be increased in drought-affected regions but total water use is unlikely to be reduced.  相似文献   

13.
Cotton plants (Gossypium hirsutum L.) grown on deficient levels of N exhibited many of the characteristics associated with drought resistance. In N-deficient plants, leaf areas and leaf epidermal cells were smaller than at the same nodes in high-N plants. N-deficient leaves lost only about half as much water per unit change in water potential as did high-N leaves. In addition, they maintained a greater relative water content than high-N leaves at any given potential. Osmotic potentials (determined from pressure-volume curves) were slightly lower in N-deficient leaves. This difference in solute concentration was not from organic acids, which were almost unchanged. Sugar concentrations could account for only about 25% of the difference.  相似文献   

14.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

15.
Abscisic acid (ABA) and a synthetic analog, the 2- cis acetylenic alcohol, were compared to evaluate their effectiveness in conditioning seedlings of Douglas-fir [ Pseudotsuga menziesii (Mirb.) Franco], Engelmann spruce ( Picea engelmannii Parry) and lodgepole pine ( Pinus contorta Dougl.). Following preconditioning with ABA and the analog, seedlings were water stressed with the osmoticum polyethylene glycol (PEG) 3350. The effects of the growth regulators on transpiration, net photosynthesis, their ratio, called water use efficiency, and cell water relations parameters were then compared in stressed and unstressed plants. The antitranspirant action of these compounds varied depending on the species, the growth regulator, and the level of stress. ABA promoted transpiration in unstressed seedlings for all 3 species seven days after application. The analog was superior to ABA as an antitranspirant in osmotically-stressed lodgepole pine and Engelmann spruce, but neither compound was effective in Douglas-fir. For Douglas-fir and Engelmann spruce, net photosynthesis remained consistently higher in ABA-treated plants during the two levels of osmotic stress, relative to control and analog treatments. Neither compound had any effect on root development or cell water relations. ABA, and to a lesser extent its analog, hastened terminal bud formation in seedlings exposed to short days and low temperatures.  相似文献   

16.
Osmotic and turgor adjustment in roots, shoots, and whole sporophytes of a NaCl-tolerant mutant and a NaCl-sensitive wild-type strain of the fern Ceratopteris richardii Brongn. were characterized following exposure to 60 millimolar NaCl, using a psychrometric approach to pressure-volume analysis. Water potential components of whole plants and shoots at full or ambient hydration were similar between strains. Roots of the mutant, however, had osmotic potentials at full turgor and water potentials at zero turgor which were lower (0.32 and 0.46 megapascal, respectively) than those in roots of the wild type after salinization. Although compromised in the absence of NaCl, sporophytes of the mutant strain were larger and much less necrotic in 60 millimolar NaCl after 17 days, compared to the wild type. Root growth in the mutant strain was unaffected by salinization and far exceeded root growth in the wild type. Correlation coefficients of the linear regression and the general consistency and precision of the pressure-volume data demonstrated the feasibility of using PV curves for estimating water potential components of roots. The technique should also provide a means of studying osmoregulation in a variety of other rapidly equilibrating plant tissues.  相似文献   

17.
A pressure-volume analysis of aubergine (Solanum melongena)leaves following water stress was undertaken to determine apossible role of changes in cellular water relations in influencingstomatal conductance responses to water stress. A comparisonof two methods of rehydrating the leaves was also undertaken.It was shown that the rehydration of excised leaves did notreveal osmoregulation, whilst rehydration of intact plants didreveal osmoregulation following water stress. An increase inthe bulk volumetric elastic modulus and the bound water fractionalso occurred in response to water stress. These results arediscussed in relation to pressure-volume technique and stomatalconductance responses to drought. Key words: P-V analysis, water stress, Solanum melongena  相似文献   

18.
The effects of ozone exposure on carbon-fixation-related processes in Pinus halepensis Mill. needles were assessed over 3 months under controlled conditions. Ozone fumigation (200 ppb) did not induce a modification of either net CO2 assimilation or stomatal conductance in 1-year-old needles, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activity was shown to be reduced by a half. Moreover, this ozone-induced reduction in Rubisco activity was associated with a decrease in the quantity of Rubisco, as determined by the decrease in the large subunit (LSU). On the other hand, 200-ppb ozone fumigation induced a strong increase in both activity and quantity of another carboxylating enzyme, phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), generally considered in C3 plants to participate in carbon catabolism processes. Ozone induced a significant decrease in the Rubisco/PEPC activity ratio which promotes the role of PEPC in trees under ozone stress. The role of this carboxylase will be discussed.  相似文献   

19.
绿洲前沿地区多枝柽柳水分关系的特征及灌溉的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 对塔克拉玛干沙漠南缘策勒绿洲前沿地区多枝柽柳(Tamarix ramosissima)进行了研究,生长季节和灌溉前后水分关系的特征表明:多枝柽柳在生长季节保持了较高较稳定的清晨水势,植物能够平衡白天水分损失造成的水分亏缺,水分恢复状况良好。环境气候变化对渗透势等水分参数的影响不及植物水分恢复状况对它们的影响。除了个别数据,多枝柽柳水势和渗透势的降低幅度很小,更像是生长过程的结果,植物水分胁迫的特征并不明显。对比水分生理上对干旱胁迫的适应——渗透势的迅速降低和质外体水含量的增加,膨压消失点相对含水量(RWCp)和渗透势差值(ΔΠ)等参数显示的生理特征表明,植物更加依靠稳定充足的水分供应来适应生长环境中极端的高水压差和与此相应的高大气蒸发要求。与此适应,植物和地下水发生了联系,并且一次性灌溉对植物水分状况的恢复基本没有帮助,保持地下水位稳定在根系的可吸收范围内成为保护绿洲前沿多枝柽柳长期存在的关键。多枝柽柳的水分特征属于中生植物的范畴,对极端环境的适应属于躲避的类型。  相似文献   

20.
Suboptimal levels of phosphorus (P) strongly inhibited leaf expansion in young cotton (Gossypium hirsutum L.) plants during the daytime, but had little effect at night. The effect of P was primarily on cell expansion. Compared to plants grown on high P, plants grown on low P had lower leaf water potentials and transpiration rates, and greater diurnal fluctuations in leaf water potential. Hydraulic conductances of excised root systems and of intact transpiring plants were determined from curves relating water flow rate per unit root length to the pressure differential across the roots. Both techniques showed that low P significantly decreased root hydraulic conductance. The effects of P nutrition on hydraulic conductance preceded effects on leaf area. Differences in total root length, shoot dry weight, and root dry weight all occurred well after the onset of differences in leaf expansion. The data strongly indicate that low P limits leaf expansion by decreasing the hydraulic conductance of the root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号