首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Acetylation of Ser-530 of sheep prostaglandin endoperoxide (PGG/H) synthase by aspirin causes irreversible inactivation of the cyclooxygenase activity of the enzyme. To determine the catalytic function of the hydroxyl group of Ser-530, we used site-directed mutagenesis to replace Ser-530 with an alanine. Cos-1 cells transfected with expression vectors containing the native (Ser-530) or mutant (Ala-530) cDNAs for sheep PGG/H synthase expressed comparable cyclooxygenase and hydroperoxidase activities. Km values for arachidonate (8 microM) and ID50 values for reversible inhibition by the cyclooxygenase inhibitors, flurbiprofen (5 microM), flufenamate (20 microM), and aspirin (20 mM), were also the same for both native and mutant PGG/H synthases; however, only the native enzyme was irreversibly inactivated by aspirin. Thus, the "active site" Ser-530 of PGG/H synthase is not essential for catalysis or substrate binding. Apparently, acetylation of native PGG/H synthase by aspirin introduces a bulky sidechain at position 530 which interferes with arachidonate binding. In related studies, a cDNA for mouse PGG/H synthase was cloned and sequenced. A sequence of 35 residues with Ser-530 at the midpoint was identical in the two proteins. Thus, Ser-530 does lie in a highly conserved region, probably involved in cyclooxygenase catalysis. Sequence comparisons of mouse and sheep PGG/H synthase also provided information about the heme-binding site of the enzyme. The sheep HYPR sequence (residues 274-277), which had been proposed to form a portion of the distal heme-binding site, is not conserved in the mouse PGG/H synthase, suggesting that this region is not the distal heme-binding site. One sequence, TIWLREHNRV (residues 303-312 of the sheep enzyme), is very closely related to the sequence TLW(L)LREHNRL common to thyroid peroxidase and myeloperoxidase. The histidine in this latter sequence is the putative axial heme ligand of these peroxidases. We suggest that the histidine (His-309) of sheep PGG/H synthase sequence is the axial heme ligand of this enzyme.  相似文献   

2.
The present study was undertaken to determine the effects of acidic fibroblast growth factor (aFGF) on eicosanoid synthesis in microvessel endothelial cells derived from rabbit left ventricular muscle (RCME cells). We observed that aFGF increased AA conversion to PGE2 in a time- and dose-dependent manner, and the stimulatory effect was abolished by actinomycin D and cycloheximide. Acidic FGF increased the recovery of PGG/H synthase activity following aspirin treatment, suggesting an action on de novo PGG/H synthase synthesis. Acidic FGF increased the incorporation of [35S] methionine into a 70 kD immunoreactive PGG/H synthase band. PGG/H synthase synthesis following aspirin treatment was also increased by transforming growth factor beta, while epidermal growth factor basic FGF and platelet derived growth factor were without effect. In addition, the actions of aFGF on de novo PGG/H synthase were compared in several endothelial preparations. Acidic FGF treatment of aspirin treated endothelial cells from rabbit lung microvessels and small pulmonary artery and from human lung microvessels all showed an increase in PGG/H synthase recovery. In contrast, similar treatment of human umbilical vein endothelial cells was without effect. Pretreatment of RCME cells with dexamethasone (1 microM) did not alter the aFGF induction of PGG/H synthase activity. We conclude that aFGF stimulates PGE2 production by a mechanism that includes the de novo synthesis of PGG/H synthase. This mechanism appears to be distinct from previously described glucocorticoid sensitive translational controls of PG synthase synthesis by epidermal growth factor in smooth muscle and mesangial cells.  相似文献   

3.
4.
5.
6.
7.
8.
Prostaglandin H synthase oxidizes arachidonic acid to prostaglandin G2 (PGG2) via its cyclooxygenase activity and reduces PGG2 to prostaglandin H2 by its peroxidase activity. The purpose of this study was to determine if endogenously generated PGG2 is the preferred substrate for the peroxidase compared with exogenous PGG2. Arachidonic acid and varying concentrations of exogenous PGG2 were incubated with ram seminal vesicle microsomes or purified prostaglandin H synthase in the presence of the reducing cosubstrate, aminopyrine. The formation of the aminopyrine cation free radical (AP.+) served as an index of peroxide reduction. The simultaneous addition of PGG2 with arachidonic acid did not alter cyclooxygenase activity of ram seminal vesicle microsomes or the formation of the AP.+. This suggests that the formation of AP.+, catalyzed by the peroxidase, was supported by endogenous endoperoxide formed from arachidonic acid oxidation rather than by the reduction of exogenous PGG2. In addition to the AP.+ assay, the reduction of exogenous versus endogenous PGG2 was studied by using [5,6,8,9,11,12,14,15-2H]arachidonic acid and unlabeled PGG2 as substrates, with gas chromatography-mass spectrometry techniques to measure the amount of reduction of endogenous versus exogenous PGG2. Two distinct results were observed. With ram seminal vesicle microsomes, little reduction of exogenous PGG2 was observed even under conditions in which all of the endogenous PGG2 was reduced. In contrast, studies with purified prostaglandin H synthase showed complete reduction of both exogenous and endogenous PGG2 using similar experimental conditions. Our findings indicate that PGG2 formed by the oxidation of arachidonic acid by prostaglandin H synthase in microsomal membranes is reduced preferentially by prostaglandin H synthase.  相似文献   

9.
The effects of prostaglandin E1 and prostaglandin G2, the prostaglandin endoperoxide, on platelet cyclic nucleotide concentrations were measured in platelet rich plasma (PRP), and in washed intact platelets. PGE1 was found to be a potent stimulator of platelet cAMP levels in both PRP and washed cells, and to inhibit aggregation in both systems. PGE1 did not change platelet cGMP levels in either PRP or washed cells. PGG2 which is a potent inducer of platelet aggregation, did not affect either the basal cAMP or the basal cGMP concentration. However, PGG2 was found to antagonize the increases in cAMP content in response to PGE1 in both PRP and washed platelets. The addition to our system of a cyclic nucleotide phosphodiesterase inhbitor, theophylline, did not change our findings. It is suggested that PGG2 may induce platelet aggregation by inhibiting PGE1-stimulated cAMP accumulation.  相似文献   

10.
TPA regulation of prostaglandin H synthase activity in primary and subcultured dog urothelial cells was investigated. Previous studies have demonstrated an early (0-2 hr) increase in PGE2 synthesis mediated by TPA which is dependent upon release of endogenous arachidonic acid by a phospholipase-mediated pathway. In this study, prostaglandin H synthase activity was assessed directly with microsomes and indirectly after addition of exogenous arachidonic acid at a maximum effective concentration (100 microM) to media. PGE2 synthesis, measured by radioimmunoassay, served as an index of prostaglandin H synthase activity. After a 24-hr incubation with 0.1 microM TPA or 1.0 microM A23187, arachidonic acid elicited significantly more PGE2 synthesis in agonist-treated cells than it did in control cells in primary culture. Microsomes from 24-hr TPA-treated cells exhibited significantly more prostaglandin H synthase activity than did those from control cells. In addition, the PGE2 content of overnight media was approximately 10-fold greater in TPA-treated cells than in control cells. The late (24 hr) response was more sensitive to lower concentrations of TPA than was the earlier (0-2 hr) response. TPA at 0.1 microM was a maximum effective dose for both responses. The 24-hr response was blocked by cycloheximide and staurosporine, inhibitors of protein synthesis and protein kinase C, respectively. Pretreatment of cells with aspirin, an irreversible inhibitor of prostaglandin H synthase, prior to addition of TPA did not prevent the late TPA-mediated increase in PGE2 synthesis. Subcultured cells exhibited both an early and a late TPA response. Only the early response was inhibited by aspirin pretreatment. Results suggest that the late response with TPA is caused by de novo synthesis of prostaglandin H synthase. Thus, primary and subcultured dog urothelial cells possess two distinct mechanisms for regulating signal transduction by arachidonic acid metabolism. This study provides a basis for assessing these mechanisms of signal transduction in urothelial cell lines and transformed cells.  相似文献   

11.
12.
Mesenchymal stromal cells (MSCs) have been shown to display a considerable therapeutic potential in cellular therapies. However, harmful adipogenic maldifferentiation of transplanted MSCs may seriously threaten the success of this therapeutic approach. We have previously demonstrated that using platelet lysate (PL) instead of widely used fetal calf serum (FCS) diminished lipid accumulation in adipogenically stimulated human MSCs and identified, among others, lipocalin-type prostaglandin D2 synthase (L-PGDS) as a gene suppressed in PL-supplemented MSCs. Here, we investigated the role of PL and putatively pro-adipogenic L-PGDS in human MSC adipogenesis. Next to strongly reduced levels of L-PGDS we show that PL-supplemented MSCs display markedly decreased expression of adipogenic master regulators and differentiation markers, both before and after induction of adipocyte differentiation. The low adipogenic differentiation capability of PL-supplemented MSCs could be partially restored by exogenous addition of L-PGDS protein. Conversely, siRNA-mediated downregulation of L-PGDS in FCS-supplemented MSCs profoundly reduced adipocyte differentiation. In contrast, inhibiting endogenous prostaglandin synthesis by aspirin did not reduce differentiation, suggesting that a mechanism such as lipid shuttling but not the prostaglandin D2 synthase activity of L-PGDS is critical for adipogenesis. Our data demonstrate that L-PGDS is a novel pro-adipogenic factor in human MSCs which might be of relevance in adipocyte metabolism and disease. L-PGDS gene expression is a potential quality marker for human MSCs, as it might predict unwanted adipogenic differentiation after MSC transplantation.  相似文献   

13.
14.
Isolation of functional cDNA clones for human thymidylate synthase   总被引:8,自引:0,他引:8  
Thymidine auxotrophic mutants of mouse FM3A cells due to thymidylate synthase deficiency can be transformed into prototrophs by DNA-mediated gene transfer using total human DNA (Ayusawa, D., Shimizu, K., Koyama, H., Takeishi, K., and Seno, T. (1983) J. Biol. Chem. 258, 48-53). From one such transformed cell clone, cloned recombinant lambda phages containing DNA fragments were obtained recently that were concluded by circumstantial genetic evidence to have been derived from the human thymidylate synthase gene (Takeishi, K., Ayusawa, D., Kaneda, S., Shimizu, K., and Seno, T. (1984) J. Biochem. (Tokyo) 95, 1477-1483). Using a DNA segment derived from the cloned genomic DNA fragment and free of repetitive sequences as a probe, functional cDNA corresponding to thymidylate synthase mRNA could be cloned from a cDNA library of SV40 transformed human fibroblasts constructed by Okayama and Berg (Okayama, H. and Berg, P. (1983) Mol. Cell. Biol. 3, 280-289). The cloned cDNA plasmid containing an insert of approximately 1.7-kilobase transformed mouse thymidine auxotrophic mutant cells to thymidine prototrophic cells at a frequency of 2-3 transformants/micrograms of DNA/10(5) cells, a value almost comparable to the highest so far reported. The resultant transformants retained the introduced cDNA and expressed human thymidylate synthase protein sufficient for supporting normal growth of otherwise auxotrophic mouse cells.  相似文献   

15.
YE1/48 is a murine cell surface disulphide-linked dimeric Ag consisting of two 45,000-50,000 Mr subunits. It is expressed on some T lymphoma lines at high levels but its expression on normal lymphocytes is very low. The functional significance of this Ag is currently unknown. We have now cloned a cDNA encoding the YE1/48. Sequence analysis revealed that it encodes a Type II membrane protein of 262 amino acids (30,500 MW), with 44 amino acids in the N-terminal cytoplasmic domain, 22 amino acids in the transmembrane domain and 196 amino acids in the C-terminal extracellular domain. There are three potential N-linked glycosylation sites in the extracellular domain all of which are probably used in the mature protein. No significant homology can be identified with other known protein sequences in the data base or with human CD28(T44), a human T cell activation antigen consisting of two 44,000 Mr subunits. The protein sequence includes in its extracellular domain the arginine-glycine-aspartic acid tripeptide, a potential cell-adhesive binding site, and a sequence similar to the consensus domain of any metal-binding proteins. However, whether these sequences are functional is unknown. Genomic Southern analysis of C57BL/6, BALB/c and C3H mice has demonstrated a restriction fragment length polymorphism. The analysis has also strongly suggested the existence of some other genes with sequences highly homologous to the YE1/48 gene. The YE1/48 gene appears to be expressed at very low levels in a wide range of lymphoid cells with no restriction to their differentiation stages. Interestingly, YE1/48 expression appears to be induced in pre-B cells after transformation by Abelson virus, suggesting an association of YE1/48 expression with the transformation of T and pre-B Cells.  相似文献   

16.
Several substituted phenols with antioxidant properties were potent reversible inhibitors of prostaglandin synthesis in 3T3 cell cultures. The ID50's for prostaglandin (PG) E2 synthesis in these cells were 0.1 muM for 2,6-xylenol, 5 muM for tricresol, 6 muM for p-cresol, 7 muM for o-cresol, 15 muM for 3,5-xylenol, 30 muM for m-cresol and 100 muM for phenol. The corresponding values for aspirin and indomethacin were 4 muM and 0.02 muM, respectively. The substituted phenols also inhibited serotinin release, aggregation and prostaglandin synthesis in human platelets induced by arachidonic acid but not by PGG2.  相似文献   

17.
18.
The occurrence of aspirin resistance has been inferred by the assessment of platelet aggregation ex vivo in patients with ischemic vascular syndromes taking aspirin. Since aspirin is a weak inhibitor of the inducible isoform of prostaglandin H synthase (COX-2), it was suggested that COX-2 may play a role in aspirin resistance. However the cellular source(s) of COX-2 possibly responsible for aspirin resistance remains unknown. Recently, the expression of the inducible isoform of COX-2 in circulating human platelets was reported. To investigate the possible contribution of COX-2 expression in platelet thromboxane (TX) biosynthesis, we have compared the inhibitory effects of NS-398 and aspirin, selective inhibitors of COX-2 and COX-1, respectively, on prostanoid biosynthesis by thrombin-stimulated platelets vs lipopolysaccharide (LPS)stimulated monocytes (expressing high levels of COX-2) isolated from whole blood of healthy subjects. NS-398 was 180-fold more potent in inhibiting monocyte COX-2 activity than platelet TXB2 production. In contrast, aspirin (55 micromol/L) largely suppressed platelet TXB2 production without affecting monocyte COX-2 activity. By using specific Western blot techniques, we failed to detect COX-2 in platelets while COX-1 was readily detectable. Our results argue against the involvement of COX-2 in TX biosynthesis by activated platelets and consequently dispute platelet COX-2 expression as an important mechanism of aspirin resistance.  相似文献   

19.
Using the cDNA of bovine lung prostaglandin F synthase (EC 1.1.1.2) as a probe, we isolated a clone from a bovine liver cDNA library which differed in only eleven nucleotides from the probe. The corresponding protein contained three amino acid substitutions, including a leucine residue which is conserved throughout all aldo-keto reductases. We inserted the liver cDNA into expression vector pUC19 and expressed the recombinant liver enzyme in E.coli. The purified liver enzyme reduced prostaglandin H2 as well as prostaglandin D2 and various carbonyl compounds. The high relative activity against prostaglandin H2 in combination with a high Km value for prostaglandin D2 identified this liver enzyme as a lung type prostaglandin F synthase. However, the binding constant for NADPH of the liver enzyme was 3.5 fold higher than that of lung prostaglandin F synthase.  相似文献   

20.
Reg (regenerating gene) was isolated as a gene specifically expressed in regenerating islets (Terazono, K., Yamamoto, H., Takasawa, S., Shiga, K., Yonemura, Y., Tochino, Y., and Okamoto, H. (1988) J. Biol. Chem. 263, 2111-2114). Rat and human Reg gene products, Reg/REG proteins, have been demonstrated to stimulate islet beta-cell growth in vitro and in vivo and to ameliorate experimental diabetes. In the present study, we isolated a cDNA for the Reg protein receptor from a rat islet cDNA library. The cDNA encoded a cell surface 919-amino acid protein, and the cells into which the cDNA had been introduced bound Reg protein with high affinity. When the cDNA was introduced into RINm5F cells, a pancreatic beta-cell line that shows Reg-dependent growth, the transformants exhibited significant increases in the incorporation of 5'-bromo-2'-deoxyuridine as well as in the cell numbers in response to Reg protein. A homology search revealed that the cDNA is a homologue to a human multiple exostoses-like gene, the function of which has hitherto been unknown. These results strongly suggest that the receptor is encoded by the exostoses-like gene and mediates a growth signal of Reg protein for beta-cell regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号