首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Proteins of the macroglobulin family are an ancient and evolutionarily conservative link of the immune system, which is actively involved in both inhibition of tumor growth cells and proliferation of tumor cells. Two basically different binding sites and a great conformational plasticity of all representatives of the macroglobulin family, as well as the presence of two to four representatives of the family in the blood of most species allow them to transport diverse substances and exert various regulatory influences on both the tumor and the entire organism. For example, the capacity of macroglobulins for binding hydrolases makes it possible to inhibit enzyme mediated tumor invasion. At the same time, an excess of macroglobulin/hydrolase complexes can activate apoptosis. The tumor is able of using macroglobulins, especially pregnancy-associated proteins, for its own protection. Specifically, pregnancy-associated alpha2-glycoprotein, which is actively produced by human tumor cells, blocks the histocompatibility complex antigens. On the contrary, the capacity of binding zinc stimulates the thymulin-dependent activation of natural killer cells. Nevertheless, the actively growing tumor expresses many receptors to macroglobulins, which are the main carriers of some cytokines and growth factors essential for proliferation.  相似文献   

2.
Proteins of the macroglobulin family are an ancient and evolutionarily conservative link of the immune system, which is actively involved in both inhibition of tumor growth cells and proliferation of tumor cells. Two basically different binding sites and a great conformational plasticity of all representatives of the macroglobulin family, as well as the presence of two to four representatives of the family in the blood of most species allow them to transport diverse substances and exert various regulatory influences on both the tumor and the entire organism. For example, the capacity of macroglobulins for binding hydrolases makes it possible to inhibit enzyme mediated tumor invasion. At the same time, an excess of macroglobulin/hydrolase complexes can activate apoptosis. The tumor is able of using macroglobulins, especially pregnancy-associated proteins, for its own protection. Specifically, pregnancy-associated α2-glycoprotein, which is actively produced by human tumor cells, blocks the his to compatibility complex antigens. On the contrary, the capacity of binding zinc stimulates the thymulin-dependent activation of natural killer cells. Nevertheless, the actively growing tumor expresses many receptors to macroglobulins, which are the main carriers of some cytokines and growth factors essential for proliferation.  相似文献   

3.
Proteins of the macroglobulin family are thioether-containing glycoproteins that act as inhibitors of a wide range of hydrolases, transporters and regulators of cytokine, hormone, lipid and oligonucleotide synthesis. As ancient components of innate immunity, these proteins are involved in folding of endogenous proteins as well as recognition and presentation of exogenous antigens. Interaction of macroglobulins with transmembrane receptors triggers cascades of reactions that regulate energy metabolism, cell division and apoptosis, participate in reproduction and cancerogenesis. A broad spectrum of conformational and functional states of molecules, depending on the type of ligands, and an appropriate set of implemented functions allow us to consider these proteins as key regulators of proteostasis. This review addresses the structure and function of macroglobulin proteins during evolution of organisms staying at different phylogenetic levels.  相似文献   

4.
Several GTP-binding proteins with poorly defined functions were previously identified in Escherichia coli (i.e. Era, ThdF (TrmE)), Bacillus subtilis (i.e. Obg) and Neisseria gonorrhoeae (i.e. EngA). In these species, every individual protein is encoded by an essential gene. BLAST searches were used to detect orthologs in genomes of various organisms. Alignments of orthologous sequences allowed the construction of phylogenetic trees and the definition of protein families. The BLAST searches also resulted in the identification of two additional families, the YchF and YihA families, named after the ychF and yihA genes of E. coli. Most families are not present in archaeal genomes, but representatives of each family were also detected in eukaryotic genomes. Only representatives of the YchF family are present in every genome sequenced to date, suggesting that YchF-like proteins might be involved in a fundamental life process. The GTP1/DRG family consisting of eukaryotic and archaeal proteins is related to the YchF family of GTP-binding proteins. The relationship of the six prokaryotic families of GTP-binding proteins and the GTP1/DRG family to eukaryotic GTPase families was also investigated: With the exception of the ARF family, a clear separation of the six prokaryotic families and the GTP1/DRG family with respect to eukaryotic (RAB, RAN, RAS and RHO) GTPases was observed.  相似文献   

5.
Argonaute proteins: mediators of RNA silencing   总被引:10,自引:0,他引:10  
Peters L  Meister G 《Molecular cell》2007,26(5):611-623
Small regulatory RNAs such as short interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi interacting RNAs (piRNAs) have been discovered in the past, and it is becoming more and more apparent that these small molecules have key regulatory functions. Small RNAs are found in all higher eukaryotes and play important roles in cellular processes as diverse as development, stress response, or transposon silencing. Soon after the discovery of small regulatory RNAs, members of the Argonaute protein family were identified as their major cellular protein interactors. This review focuses on the various cellular functions of mammalian Argonaute proteins in conjunction with the different small RNA species that are known today.  相似文献   

6.
The Drosophila olfactory genes OS-E and OS-F are members of a family of genes that encode insect odorant-binding proteins (OBPs). OBPs are believed to transport hydrophobic odorants through the aqueous fluid within olfactory sensilla to the underlying receptor proteins. The recent discovery of a large family of olfactory receptor genes in Drosophila raises new questions about the function, diversity, regulation, and evolution of the OBP family. We have investigated the OS-E and OS-F genes in a variety of Drosophila species. These studies highlight potential regions of functional significance in the OS-E and OS-F proteins, which may include a region required for interaction with receptor proteins. Our results suggest that the two genes arose by an ancient gene duplication, and that in some lineages, one or the other gene has been lost. In D. virilis, the OS-F gene shows a different spatial pattern of expression than in D. melanogaster. One of the OS-F introns shows a striking degree of conservation between the two species, and we identify a putative regulatory sequence within this intron. Finally, a phylogenetic analysis places both OS-E and OS-F within a large family of insect OBPs and OBP-like proteins.  相似文献   

7.
14-3-3蛋白家族的调控机制和生物学功能   总被引:1,自引:0,他引:1  
14-3-3蛋白家族在真核细胞中广泛表达并高度保守,它们主要以同源/异源二聚体形式存在,可以同时与两个靶蛋白或一个靶蛋白的两个结构域相互作用。14-3-3蛋白通过磷酸化丝氨酸/苏氨酸介导和靶蛋白结合,从而发挥其调控功能。现对14-3-3蛋白的识别序列、与配体相互作用的特点,及其在细胞周期、凋亡、信号转导、线粒体/叶绿体前体蛋白跨膜转运中的调控机制和发挥的生物学功能进行综述。  相似文献   

8.
Role of proteins of the macroglobulin family in the mechanisms of infection   总被引:1,自引:0,他引:1  
Information on the properties of proteins of the macroglobulin family taking part in the host protection from viral, fungal and bacterial pathogens is reviewed. High plasticity and polyfunctional character of these proteins makes it possible to realize different protective functions. They inhibit the lysis of the cell wall by binding the hydrolases of the pathogen thus blocking its penetration into the cell, directly participate in the presentation of antigens to immunocompetent cells, transport antibacterial substances (interferons, lysozyme) to the zone of infection. In addition, macroglobulins take part in the apoptosis regulation in infected cells, utilization of the lysosomal enzymes of annihilated pathogens. The complexes of macroglobulins with some proteins are powerful inductors of antibody production. Further studies of the properties of these proteins will result in a better understanding of the nature of infectious process. The possibility of artificial formation of macroglobulin complexes with pathogen components or with substances possessing protective or anti-inflammatory properties opens prospects for using these proteins in the fields of vaccinology, gene therapy and molecular biology.  相似文献   

9.
10.
Structural biology of the Bcl-2 family of proteins   总被引:29,自引:0,他引:29  
The proteins of the Bcl-2 family are important regulators of programmed cell death. Structural studies of Bcl-2 family members have provided many important insights into their molecular mechanism of action and how members of this family interact with one another. To date, structural studies have been performed on six Bcl-2 family members encompassing both anti- (Bcl-x(L), Bcl-2, KSHV-Bcl-2, Bcl-w) and pro-apoptotic (Bax, Bid) members. They all show a remarkably similar fold despite an overall divergence in amino acid sequence and function (pro-apoptotic versus anti-apoptotic). The three-dimensional structures of Bcl-2 family members consist of two central, predominantly hydrophobic alpha-helices surrounded by six or seven amphipathic alpha-helices of varying lengths. A long, unstructured loop is present between the first two alpha-helices. The structures of the Bcl-2 proteins show a striking similarity to the overall fold of the pore-forming domains of bacterial toxins. This finding led to experiments which demonstrated that Bcl-x(L), Bcl-2, and Bax all form pores in artificial membranes. A prominent hydrophobic groove is present on the surface of the anti-apoptotic proteins. This groove is the binding site for peptides that mimic the BH3 region of various pro-apoptotic proteins such as Bak and Bad. Structures of Bcl-x(L) in complex with these BH3 peptides showed that they bind as an amphipathic alpha-helix and make extensive hydrophobic contacts with the protein. These data have not only helped to elucidate the interactions important for hetero-dimerization of Bcl-2 family members but have also been used to guide the discovery of small molecules that block Bcl-x(L) and Bcl-2 function. In the recently determined structure of the anti-apoptotic Bcl-w protein, the protein was also found to have a hydrophobic groove on its surface capable of binding BH3-containing proteins and peptides. However, in the native protein an additional carboxy-terminal alpha-helix interacts with the hydrophobic groove. This is reminiscent of how the carboxy-terminal alpha-helix of the pro-apoptotic protein Bax binds into its hydrophobic groove. This interaction may play a regulatory role and for Bax may explain why it is found predominately in the cytoplasm prior to activation. The hydrophobic groove of the pro-apoptotic protein, Bid protein, is neither as long nor as deep as that found in Bcl-x(L), Bcl-2, or Bax. In addition, Bid contains an extra alpha-helix, which is located between alpha1 and alpha2 with respect to Bcl-x(L), Bcl-2, and Bax. Although there are still many unanswered questions regarding the exact mechanism by which the Bcl-2 family of proteins modulates apoptosis, structural studies of these proteins have deepened our understanding of apoptosis on the molecular level.  相似文献   

11.
Synaptotagmin-like mitochondrial-lipid-binding (SMP) domain proteins are evolutionarily conserved family of proteins in eukaryotes that localize between the endoplasmic reticulum (ER) and either the plasma membrane (PM) or other organelles. They are involved in tethering of these membrane contact sites through interaction with other proteins and membrane lipids. Recent structural and biochemical studies have demonstrated that SMP domain proteins transport a wide variety of lipid species by the ability of the SMP domain to harbor lipids through its unique hydrophobic cavity. Growing evidence suggests that SMP domain proteins play critical roles in cell physiology by their actions at membrane contact sites. In this review, we summarize the functions of SMP domain proteins and their direct roles in lipid transport across different membrane compartments. We also discuss their physiological functions in organisms as well as “bypass” pathways that act in parallel with SMP domain proteins at membrane contact sites.  相似文献   

12.
Facultatively anaerobic bacteria are able to adapt to many different growth conditions. Their capability to change their metabolism optimally is often ensured by FNR-like proteins. The FNR protein ofEscherichia coli functions as the main regulator during the aerobic-to-anaerobic switch. Low oxygen tensions activate this protein which is expressed constitutively and is inactive under aerobic conditions. The active form is dimeric and contains a [4Fe−4S]2+ cluster. The direct dissociation of the cluster to the [2Fe−2S]2+ cluster by the effect of oxygen leads to destabilization of the FNR dimer and to loss of its activity. The active FNR induces the expression of many anaerobic genes; the set comprises over 100 of controlled genes. Many other bacteria contain one or more FNR analogues. All these proteins form the FNR family of regulatory proteins. Properties of these proteins are very distinct, sometimes even among representatives of different strains of the same bacterial species. FNR-like proteins together with other regulators (e.g., two-component system ArcBA, nitrate-sensing system NarXL,etc.) control a complicated network of modulons that is characteristic for every species or even strain and enables fine tuning of gene expression.  相似文献   

13.
14.
15.
16.
When present in high copy number plasmids, the nuclear genes MRS3 and MRS4 from Saccharomyces cerevisiae can suppress the mitochondrial RNA splicing defects of several mit- intron mutations. Both genes code for closely related proteins of about Mr 32,000; they are 73% identical. Sequence comparisons indicate that MRS3 and MRS4 may be related to the family of mitochondrial carrier proteins. Support for this notion comes from a structural analysis of these proteins. Like the ADP/ATP carrier protein (AAC), the mitochondrial phosphate carrier protein (PiC) and the uncoupling protein (UCP), the two MRS proteins have a tripartite structure; each of the three repeats consists of two hydrophobic domains that are flanked by specific amino acid residues. The spacing of these specific residues is identical in all domains of all proteins of the family, whereas spacing between the hydrophobic domains is variable. Like the AAC protein, the MRS3 and MRS4 proteins are imported into mitochondria in vitro and without proteolytic cleavage of a presequence and they are located in the inner mitochondrial membrane. In vivo studies support this mitochondrial localization of the MRS proteins. Overexpression of the MRS3 and MRS4 proteins causes a temperature-dependent petite phenotype; this is consistent with a mitochondrial function of these proteins. Disruption of these genes affected neither mitochondrial functions nor cellular viability. Their products thus have no essential function for mitochondrial biogenesis or for whole yeast cells that could not be taken over by other gene products. The findings are discussed in relation to possible functions of the MRS proteins in mitochondrial solute translocation and RNA splicing.  相似文献   

17.
Acidic ribosomal protein family of yeast Saccharomyces cerevisiae consists of four species of 13-kDa proteins and one species of 38-kDa protein. These proteins are thought to form a complex on ribosomes functioning in the translational elongation reaction, but the structural basis how to associate with one another is not known. In this communication, we show for the first time the presence of a structure equivalent to the leucine zipper on a putative alpha-helix in the 38-kDa acidic ribosomal protein, A0. Then, all the 13-kDa acidic ribosomal proteins are shown to have two periodic arrays of hydrophobic amino acid residues arranged on the opposite sides of a putative alpha-helix, which is referred to as the "bilateral hydrophobic zipper". Therefore, it is proposed that one of the 13-kDa acidic ribosomal proteins associates with 38-kDa protein A0 via the hydrophobic zipper and then the other 13-kDa proteins associate side by side via the bilateral hydrophobic zippers.  相似文献   

18.
In the yeast Saccharomyces cerevisiae, three enzymes of the sterol biosynthetic pathway, namely Erg1p, Erg6p and Erg7p, are located in lipid particles. Whereas Erg1p (squalene epoxidase) is also present in the endoplasmic reticulum (ER) to a significant amount, only traces of Erg6p (sterol C-24 methyltransferase) and Erg7p (lanosterol synthase) are found in the ER. We have chosen these three Erg-proteins as typical representatives of lipid particle proteins to study targeting to their destination. Lipid particle proteins do not contain obvious targeting motifs, but the only common structural feature is the presence of one or two hydrophobic domains near the C-termini. We constructed truncated versions of Erg1p, Erg6p and Erg7p to test the role of these hydrophobic domains in subcellular distribution. Our results demonstrate that lack of the hydrophobic domains prevents at least in part the association of the proteins with lipid particles and causes their retention to the ER. This result strongly supports the view that ER and lipid particles are related organelles.  相似文献   

19.
The sequences of the capsular biosynthetic (cps) loci of 90 serotypes of Streptococcus pneumoniae have recently been determined. Bioinformatic procedures were used to predict the general functions of 1,973 of the 1,999 gene products and to identify proteins within the same homology group, Pfam family, and CAZy glycosyltransferase family. Correlating cps gene content with the 54 known capsular polysaccharide (CPS) structures provided tentative assignments of the specific functions of the different homology groups of each functional class (regulatory proteins, enzymes for synthesis of CPS constituents, polymerases, flippases, initial sugar transferases, glycosyltransferases [GTs], phosphotransferases, acetyltransferases, and pyruvyltransferases). Assignment of the glycosidic linkages catalyzed by the 342 GTs (92 homology groups) is problematic, but tentative assignments could be made by using this large set of cps loci and CPS structures to correlate the presence of particular GTs with specific glycosidic linkages, by correlating inverting or retaining linkages in CPS repeat units with the inverting or retaining mechanisms of the GTs predicted from their CAZy family membership, and by comparing the CPS structures of serotypes that have very similar cps gene contents. These large-scale comparisons between structure and gene content assigned the linkages catalyzed by 72% of the GTs, and all linkages were assigned in 32 of the serotypes with known repeat unit structures. Clear examples where very similar initial sugar transferases or glycosyltransferases catalyze different linkages in different serotypes were also identified. These assignments should provide a stimulus for biochemical studies to evaluate the reactions that are proposed.  相似文献   

20.
The members of the Bcl-2 family of proteins are crucial regulators of apoptosis. In order to determine cell fate, these proteins must be targeted to distinct intracellular membranes, including the mitochondrial outer membrane (MOM), the membrane of the endoplasmic reticulum (ER) and its associated nuclear envelope. The targeting sequences and mechanisms that mediate the specificity of these proteins for a particular cellular membrane remain poorly defined. Several Bcl-2 family members have been reported to be tail-anchored via their predicted hydrophobic COOH-terminal transmembrane domains (TMDs). Tail-anchoring imposes a posttranslational mechanism of membrane insertion on the already folded protein, suggesting that the transient binding of cytosolic chaperone proteins to the hydrophobic TMD may be an important regulatory event in the targeting process. The TMD of certain family members is initially concealed and only becomes available for targeting and membrane insertion in response to apoptotic stimuli. These proteins either undergo a conformational change, posttranslational modification or a combination of these events enabling them to translocate to sites at which they are functional. Some Bcl-2 family members lack a TMD, but nevertheless localize to the MOM or the ER membrane during apoptosis where they execute their functions. In this review, we will focus on the intracellular targeting of Bcl-2 family members and the mechanisms by which they translocate to their sites of action. Furthermore, we will discuss the posttranslational modifications which regulate these events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号