首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized.

Methods

This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19.

Key Results

All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana.

Conclusions

OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.  相似文献   

2.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall-modifying enzymes that align within three or four distinct phylogenetic subgroups. One explanation for this grouping is association with different enzymic modes of action, as XTHs can have xyloglucan endotransglucosylase (XET) or endohydrolase (XEH) activities. While Group 1 and 2 XTHs predominantly exhibit XET activity, to date the activity of only one member of Group 3 has been reported: nasturtium TmXH1, which has a highly specialized function and hydrolyses seed-storage xyloglucan rather than modifying cell wall structure. Tomato fruit ripening was selected as a model to test the hypothesis that preferential XEH activity might be a defining characteristic of Group 3 XTHs, which would be expressed during processes where net xyloglucan depolymerization occurs. Database searches identified 25 tomato XTHs, and one gene (SlXTH5) was of particular interest as it aligned within Group 3 and was expressed abundantly during ripening. Recombinant SlXTH5 protein acted primarily as a transglucosylase in vitro and depolymerized xyloglucan more rapidly in the presence than in the absence of xyloglucan oligosaccharides (XGOs), indicative of XET activity. Thus, there is no correlation between the XTH phylogenetic grouping and the preferential enzymic activities (XET or XEH) of the proteins in those groups. Similar analyses of SlXTH2, a Group 2 tomato XTH, and nasturtium seed TmXTH1 revealed a spectrum of modes of action, suggesting that all XTHs have the capacity to function in both modes. The biomechanical properties of plant walls were unaffected by incubation with SlXTH5, with or without XGOs, suggesting that XTHs do not represent primary cell wall-loosening agents. The possible roles of SlXTH5 in vivo are discussed.  相似文献   

3.
Cho SK  Kim JE  Park JA  Eom TJ  Kim WT 《FEBS letters》2006,580(13):3136-3144
Xyloglucan endotransglucosylase/hydrolase (XTH) has been recognized as a cell wall-modifying enzyme, participating in the diverse physiological roles. From water-stressed hot pepper plants, we isolated three different cDNA clones (pCaXTH1, pCaXTH2, and pCaXTH3) that encode XTH homologs. RT-PCR analysis showed that three CaXTH mRNAs were concomitantly induced by a broad spectrum of abiotic stresses, including drought, high salinity and cold temperature, and in response to stress hormone ethylene, suggesting their role in the early events in the abiotic-related defense response. Transgenic Arabidopsis plants that constitutively expressed the CaXTH3 gene under the control of the CaMV 35S promoter exhibited abnormal leaf morphology; the transgenic leaves showed variable degrees of twisting and bending along the edges, resulting in a severely wrinkled leaf shape. Microscopic analysis showed that 35S-CaXTH3 leaves had increased numbers of small-sized cells, resulting in disordered, highly populated mesophyll cells in each dorsoventral layer, and appeared to contain a limited amount of starch. In addition, the 35S-CaXTH3 transgenic plants displayed markedly improved tolerance to severe water deficit, and to lesser extent to high salinity in comparison with the wild-type plants. These results indicate that CaXTH3 is functional in heterologous Arabidopsis cells, thereby effectively altering cell growth and also the response to abiotic stresses. Although the physiological function of CaXTHs is not yet clear, there are several possibilities for their involvement in a subset of physiological responses to counteract dehydration and high salinity stresses in transgenic Arabidopsis plants.  相似文献   

4.
Xyloglucan endotransglucosylase/hydrolases (XTHs; EC 2.4.1.207and/or EC 3.2.1.15 [EC] 1) are enzymes involved in the modificationof cell wall structure by cleaving and, often, also re-joiningxyloglucan molecules in primary plant cell walls. Using a poolof antibodies raised against an enriched cell wall protein fraction,a new XTH cDNA in maize, ZmXTH1, has been isolated from a cDNAexpression library obtained from the elongation zone of themaize root. The predicted protein has a putative N-terminalsignal peptide and possesses the typical domains of this enzymefamily, such as a catalytic domain that is homologous to thatof Bacillus macerans β-glucanase, a putative N-glycosylationmotif, and four cysteine residues in the central and C terminalregions of the ZmXTH1 protein. Phylogenetic analysis of ZmXTH1reveals that it belongs to subgroup 4, so far only reportedfrom Poaceae monocot species. ZmXTH1 has been expressed in Pichiapastoris (a methylotrophic yeast) and the recombinant enzymeshowed xyloglucan endotransglucosylase but not xyloglucan endohydrolaseactivity, representing the first enzyme belonging to subgroup4 characterized in maize so far. Expression data indicate thatZmXTH1 is expressed in elongating tissues, modulated by cultureconditions, and induced by gibberellins. Transient expressionassays in onion cells reveal that ZmXTH1 is directed to thecell wall, although weakly bound. Finally, Arabidopsis thalianaplants expressing ZmXTH1 show slightly increased xyloglucanendohydrolase activity and alterations in the cell wall structureand composition. Key words: Cell elongation, cell wall, plant transformation, XEH, XET, XTH, Zea mays  相似文献   

5.
This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi‐gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi‐gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue‐dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte‐specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte‐specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non‐seed plants.  相似文献   

6.
7.
Xyloglucan oligosaccharides fluorescently labeled with sulforhodamine have proved to be a valuable tool in the assessment of transglycosylating activity of plant xyloglucan endotransglucosylase/hydrolase (XTH; EC 2.4.1.207). Here we describe a simple and fast procedure for their preparation. Accordingly, the starting xyloglucan-derived oligosaccharides are in the first step converted to their corresponding 1-amino-1-deoxyalditols (glycamines) by incubation with ammonium acetate and NaCNBH(3) at 80 degrees C for 2-4 h, and in the second step, the glycamines are reacted with Lissamine rhodamine B sulfonyl chloride to obtain fluorescently labeled derivatives of the oligosaccharide glycamines. All operations are carried out in a single centrifuge tube and the products from the individual reaction steps are isolated on the basis of their differential solubility in organic solvents. Using the described protocol, the whole procedure can be accomplished in less than 24 h. The sulforhodamine-labeled xyloglucan oligosaccharides thus obtained proved suitable as substrates for a sensitive fluorescence assay of the transglycosylating activity of XTH.  相似文献   

8.
9.
10.
Molecular dynamics simulations of the tetradecasaccharide XXXGXXXG in complex with the hybrid aspen xyloglucan endo-transglycosylase PttXET16-34 have been performed and analysed with respect to structure, dynamics, flexibility and ligand interactions. Notably, the charge state of the so-called ‘helper residue’ aspartate 87 (Asp87), which lies between the catalytic nucleophile [glutamate 85 (Glu85)] and general acid/base (Glu89) residues on the same beta strand, had a significant effect on PttXET16-34 active site structure. When Asp87 was deprotonated, electrostatic repulsion forced the nucleophile away from C1 of the sugar ring in subsite ? 1 and the proton–donating ability of Glu89 was also weakened due to the formation of a hydrogen bond with Asp87, whereas the protonation of Asp87 resulted in the formation of a hydrogen bond with the catalytic nucleophile and correct positioning of the catalytic machinery. The results suggest that catalysis in glycoside hydrolase family 16, and by extension clan GH-B enzymes, is optimal when the catalytic nucleophile is deprotonated for nucleophilic attack on the substrate, whereas the ‘helper residue’ and general acid/base residue are both in their conjugate acid forms to align the nucleophile and deliver a proton to the departing sugar, respectively.  相似文献   

11.
12.
The plant cell wall is the structural basis of cellular form and thus forms a foundation on which morphogenesis builds organs and tissues. Enzymes capable of modifying major wall components are prominent candidates for regulating wall form and function. Xyloglucan endotransglucosylases/hydrolases (XTHs) are predicted to participate in xyloglucan integration and/or restructuring. XTHs are encoded by large gene families in plants; the Arabidopsis genome encodes 33 XTHs. To gain insight into the potential physiological relevance of the distinct members of this family, GUS reporter fusion genes were constructed, and plants expressing these transgenes were characterized to reveal spatial and temporal patterns of expression. In addition, Genevestigator sources were mined for comprehensive and comparative XTH expression regulation analysis. These data reveal that the Arabidopsis XTHs are likely expressed in every developmental stage from seed germination through flowering. All organs show XTH::GUS expression and most, if not all, are found to express multiple XTH::GUS genes. These data suggest that XTHs may contribute to morphogenesis at every developmental stage and in every plant organ. Different XTHs have remarkably diverse and distinct expression patterns indicating that paralogous genes have evolved differential expression regulation perhaps contributing to the maintenance of the large gene family. Extensive overlap in XTH expression patterns is evident; thus, XTHs may act combinatorially in determining wall properties of specific tissues or organs. Knowledge of gene-specific expression among family members yields evidence of where and when gene products may function and provides insights to guide rational approaches to investigate function through reverse genetics. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
Wood fibres constitute a renewable raw material for the production of novel biomaterials. The development of efficient methods for cellulose surface modification is essential for expanding the properties of wood fibres for increased reactivity and compatibility with other materials. By combining the high affinity between xyloglucan and cellulose, the unique mechanistic property of xyloglucan endo-transglycosylases (XET, EC 2.4.1.207) to catalyze polysaccharide-oligosaccharide coupling reactions, and traditional carbohydrate synthesis, a new system for the attachment of a wide variety of functional groups to wood pulps has been generated. An overview of recent developments is presented in the context of the structure, physical properties, and historical applications of xyloglucan.  相似文献   

14.
Wood fibres constitute a renewable raw material for the production of novel biomaterials. The development of efficient methods for cellulose surface modification is essential for expanding the properties of wood fibres for increased reactivity and compatibility with other materials. By combining the high affinity between xyloglucan and cellulose, the unique mechanistic property of xyloglucan endo-transglycosylases (XET, EC 2.4.1.207) to catalyze polysaccharide-oligosaccharide coupling reactions, and traditional carbohydrate synthesis, a new system for the attachment of a wide variety of functional groups to wood pulps has been generated. An overview of recent developments is presented in the context of the structure, physical properties, and historical applications of xyloglucan.  相似文献   

15.
O'Looney N  Fry SC 《Annals of botany》2005,96(6):1097-1107
BACKGROUND AND AIMS: Oxaziclomefone (OAC), a new herbicide, inhibits cell expansion, especially in roots and cell-cultures of gramineous monocots. OAC does not affect turgor in cultured maize cells, and must therefore inhibit wall-loosening or promote wall-tightening. METHODS: The effects of OAC in living cultured maize cells on various biochemical processes thought to influence wall extension were studied. KEY RESULTS: OAC did not affect 14C-incorporation from D-[U-14C]glucose into the major sugar residues of the cell wall (cellulosic glucose, non-cellulosic glucose, arabinose, xylose, galactose, mannose or uronic acids). OAC had no effect on 14C-incorporation from trans-[U-14C]cinnamate into wall-bound ferulate or its oxidative coupling-products. OAC did not influence the secretion or in-vivo action of peroxidase or xyloglucan endotransglucosylase activities-proposed wall-tightening and -loosening activities, respectively. The herbicide did not affect the consumption of extracellular L-ascorbate, an apoplastic solute proposed to act as an antioxidant and/or to generate wall-loosening hydroxyl radicals. CONCLUSIONS: OAC decreased wall extensibility without influencing the synthesis or post-synthetic modification of major architectural wall components, or the redox environment of the apoplast. The possible value of OAC as a probe to explore aspects of primary cell wall physiology is discussed.  相似文献   

16.
A suppressive subtractive hybridization technique was used to identify genes, which were induced during the early phases of the interaction between dodder (Cuscuta reflexa), a phanerogamic parasite, and its incompatible host plant tomato. One of the identified genes encodes a tomato xyloglucan endotransglycosylase/hydrolase (XTH)--an enzyme involved in cell wall elongation and restructuring. The corresponding LeXTH1 mRNA accumulated 6 h after attachment of the parasite. In contrast, wounding did not influence the expression level. Subsequent to LeXTH1 mRNA accumulation, an increase in XTH activity at the infection sites as well as in adjacent tissues was observed. The effect of IAA on LeXTH1 expression was analyzed because the concentration of this phytohormone is known to increase in the tomato tissue during the interaction with the parasite. LeXTH1 mRNA accumulation was in fact induced by external application of auxin. However, in the auxin-insensitive tomato mutant diageotropica, Cuscuta induced LeXTH1-mRNA accumulated with a time course similar to wild type tomato. Thus, auxin appears not to be an essential signal for infection-induced LeXTH1 activation. Our data suggest a role for xyloglucan transglycosylation in defence reactions associated with the incompatible tomato- Cuscuta interaction.  相似文献   

17.
18.
Xyloglucan endotransglycosylase/hydrolases (XTHs) are enzymes that cleave and rejoin xyloglucan chains. To trace the evolutionary origin of XTHs, we used Selaginella kraussiana, a representative of the most primitive land plants (Lycopodiophyta). A Southern blot with a digoxigenin-labeled probe, designed on the conserved catalytic site of XTHs, indicated nine genes. The presence of at least seven functional XTHs was detected by isoelectric focusing (IEF) followed by overlaying the gel with a XET-test paper. Together, these results indicate that XTHs are encoded by a multi-gene family that originated during or even before the colonization of land by plants.  相似文献   

19.
Fluorescently labeled derivatives of a xyloglucan (XG) nonasaccharide Glc4Xyl3Gal2 (XLLG) were used as glycosyl acceptors in assays of xyloglucan endotransglycosylase (XET) from germinated nasturtium (Tropaeolum majus) seeds. We have investigated how the type of the oligosaccharide label influences the kinetic parameters of the reaction. The fluorescent probes used to label XLLG were anthranilic acid (AA), 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS), fluorescein isothiocyanate (FITC), and sulforhodamine (SR), respectively. The obtained data were compared with those of the reactions where aldose and/or alditol forms of tritium-labeled xyloglucan-derived nonasaccharide served as the respective acceptors. Modification at C-1 of the reducing-end glucose in XLLG by substitution with the fluorophore markedly affected the kinetic parameters of the reaction. The Michaelis constants Km for individual acceptors increased in the order [1-3H]XLLG < XLLG-SR < [1-3H]XLLGol < XLLG-FITC < XLLG-ANTS < XLLG-AA, while the turnover numbers characterized by kcat decreased in the order XLLG-FITC > XLLG-SR > XLLG-ANTS > [1-3H]XLLGol > [1-3H]XLLG > XLLG-AA. Catalytic efficiency (expressed as kcat/Km) with XLLG labeled with SR or FITC was 15 and 28 times, respectively, higher than with the tritium-labeled natural substrate [1-3H]XLLG. Comparison of the kinetic parameters found with acceptors labeled with different types of labels enables to select the most effective substrates for the high-throughput assays of XET.  相似文献   

20.
Two kinds of xyloglucan derivatives (xyloglucan selenious ester and sulfated xyloglucan) were prepared and evaluated on antioxidant activity and antitumor activity. Compared with xyloglucan, xyloglucan derivatives have new bioactivity against oxidative damage and tumor. Furthermore, xyloglucan selenious ester is more potent than sulfated xyloglucan at antioxidant activity and antitumor activity in vitro. The current data suggest for the first time that selenition of xyloglucan significantly increases its bioactivity and the chemical modification of polysaccharide may allow the preparation of derivatives with new properties and a variety of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号