首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant phenols as in vitro inhibitors of glutathione S-transferase(s)   总被引:3,自引:0,他引:3  
Ellagic acid, a commonly occurring plant phenol, was shown to be a potent in vitro inhibitor of GSH-transferase(s) activity. Other plant phenols such as ferrulic acid, caffeic acid and chlorogenic acid also showed a concentration dependent inhibition of GSH-transferase(s) activity. The I50 values of ellagic acid, caffeic acid, chlorogenic acid and ferrulic acid were 8.3 X 10(-5)M, 14.0 X 10(-5)M, 20.0 X 10(-5)M and 22.0 X 10(-5)M respectively, suggesting that ellagic acid is the most potent inhibitor of all the four studied plant phenols. At 55 microM concentration of ellagic acid, a significant inhibition (35-47%) was observed on GSH-transferase activity towards CDNB, p-nitrobenzyl chloride and 1,2-epoxy-3-(p-nitrophenoxy)propane as substrates. Ellagic acid inhibited GSH-transferase(s) activity in a non-competitive manner with respect to CDNB while with respect to GSH it inhibited the enzyme activity in a competitive manner. Other phenolic compounds purpurogallin , quercetin, alizarin and monolactone also showed a concentration dependent inhibition of the enzyme activity with a I50 of 0.8 X 10(-5)M, 1.0 X 10(-5)M, 8.0 X 10(-5)M and 16.0 X 10(-5)M respectively. These inhibitors of GSH-transferase(s) activity should be useful in studying the in vitro enzyme mediated reactions of exogenous and endogenous compounds.  相似文献   

2.
Karam RA  Pasha HF  El-Shal AS  Rahman HM  Gad DM 《Gene》2012,497(2):314-319

Background

Asthma is a complex multifactorial disease with an obvious genetic predisposition. Polymorphisms of the glutathione-S-transferase (GST) genes are known risk factors for some environmentally-related diseases. The aim of the present study was to investigate the role of polymorphisms in the GSTT1, GSTM1 and GSTP1 genes and asthma susceptibility in Egyptian children, and to analyze their effect on GST activity and lung function.

Methods

GSTT1 and GSTM1 gene polymorphism was genotyped using the multiplex polymerase chain reaction (PCR) and GSTP1 ILe105Val polymorphism was determined using PCR-restriction fragment length polymorphism (PCR-RFLP) in 168 healthy and 126 asthmatic children (82 atopic and 44 nonatopic). Also GST enzyme activity and lung function were evaluated.

Results

Asthmatic children had a significant higher prevalence of the GSTM1 null (P = 0.003) and significant lower prevalence of GSTP1 Val/Val genotypes (P = 0.02) than control group. Lung function was significantly decreased in GSTM1 null genotype and GSTP1 Ile/Ile genotype. GSTP1 Val/Val genotypes and GSTM1 null genotype had a significant decrease in plasma GST activity.

Conclusions

GST genes polymorphisms may play an important role in pathogenesis and susceptibility to asthma in children.  相似文献   

3.
The glutathione S-transferase from Plasmodium falciparum presents distinct features which are absent from mammalian GST isoenzyme counterparts. Most apparent among these are the ability to tetramerize and the presence of a flexible loop. The loop, situated between the 113–119 residues, has been reported necessary for the tetramerization process. In this article, we report that a residue outside of this loop, Asn112, is a key to the process — to the point where the single Asn112Leu mutation prevents tetramerization altogether. We propose that a structural pattern involving the interaction of the Asn112 and Lys117 residues from two neighboring subunits plays a role in keeping the tetramer structure stable. We also report that, for the tetramerization of the wild-type PfGST to occur, phosphate or pyrophosphate anions must be present. In other words, tetramerization is a phosphate- or pyrophosphate-induced process. Furthermore, the presence of magnesium reinforces this induction. We present experimental evidence for these claims as well as a preliminary calorimetric and kinetic study of the dimeric Asn112Leu PfGST mutant. We also propose a putative binding site for phosphate or pyrophosphate anions through a comparative structural analysis of PfGST and pyrophosphatases from several organisms. Our results highlight the differences between PfGST and the human isoenzymes, which make the parasite enzyme a suitable antimalarial target.  相似文献   

4.
Activities of epoxide hydratase and glutathione (GSH) S-transferase were investigated in subcellular fractions of Drosophila melanogaster, and these activities were compared with analogous enzymic activities in extracts from rat liver. Microsomes of Drosophila were active in the hydratation of styrene oxide catalyzed by epoxide hydratase. The post-microsomal supernatant of Drosophila catalyzed the conjugation of GSH with 1-chloro-2,4-dinitrobenzene. However, GSH S-transferase activity with styrene oxide as the electrophilic substrate was not measurable. The respective specific activities of epoxide hydratase (per mg microsomal protein) and GSH S-transferase (per mg cytosolic protein) were factors of 5- and 10-fold lower than the corresponding activities in rat liver. However, when expressed per gram body weight, activities of both epoxide hydratase and GSH S-transferase were 3 times higher for Drosophila enzymes. The apparent Km values for the two Drosophila enzymes were higher, whereas the apparent Km values were lower, than the values found for the rat-liver enzymes. Among 3 different Drosophila strains (a wild-type, a white eye-color carrying mutant strain and a DDT-resistant strain), preliminary experiments showed no differences as far as these two enzymic activities were concerned. It is concluded that the results obtained in genetic toxicology testing with Drosophila are probably relevant to effects to be expected in mammalian systems with compounds requiring metabolic processes involving the enzymes investigated here.  相似文献   

5.
Malaria parasite glutathione S-transferases (GSTs) are postulated to be essential for parasite survival by protecting the parasite against oxidative stress and buffering the detoxification of heme-binding compounds; therefore, GSTs are considered potential targets for drug development. In this study, we identified a Plasmodium vivax gene encoding GST (PvGST) and characterized the biochemical properties of the recombinant enzyme. The PvGST contained 618 bp that encoded 205 amino acids and shared a significant degree of sequence identity with GSTs from other Plasmodium species. The recombinant homodimeric enzyme had an approximate molecular mass of 50kDa and exhibited GSH-conjugating and GSH-peroxidase activities towards various model substrates. The optimal pH for recombinant PvGST (rPvGST) activity was pH 8.0, and the enzyme was moderately unstable at 37 degrees C. The K(m) values of rPvGST with respect to GSH and CDNB were 0.17+/-0.09 and 2.1+/-0.4mM, respectively. The significant sequence homology and similar biochemical properties of PvGST and Plasmodium falciparum GST (PfGST) indicate that they may have similar molecular structures. This information may be useful for the design of specific inhibitors for plasmodial GSTs as potential antimalarial drugs.  相似文献   

6.
A library of alpha class glutathione transferases (GSTs), composed of chimeric enzymes derived from human (A1-1, A2-2 and A3-3), bovine (A1-1) and rat (A2-2 and A3-3) cDNA sequences was constructed by the method of DNA shuffling. The GST variants were screened in bacterial lysates for activity with the immunosuppressive agent azathioprine, a prodrug that is transformed into its active form, 6-mercaptopurine, by reaction with the tripeptide glutathione catalyzed by GSTs. Important structural determinants for activity with azathioprine were recognized by means of primary structure analysis and activities of purified enzymes chosen from the screening. The amino acid sequences could be divided into 23 exchangeable segments on the basis of the primary structures of 45 chosen clones. Segments 2, 20, 21, and 22 were identified as primary determinants of the azathioprine activity representing two of the regions forming the substrate-binding H-site. Segments 21 and 22 are situated in the C-terminal helix characterizing alpha class GSTs, which is instrumental in their catalytic function. The study demonstrates the power of DNA shuffling in identifying segments of primary structure that are important for catalytic activity with a targeted substrate. GSTs in combination with azathioprine have potential as selectable markers for use in gene therapy. Knowledge of activity-determining segments in the structure is valuable in the protein engineering of glutathione transferase for enhanced or suppressed activity.  相似文献   

7.
Butylated hydroxytoluene (BHT) at concentrations of 300-6000 ppm in the diet caused a dose-dependent increase in gamma-glutamyl transpeptidase (GGT) activity in normal F344 male rat liver at 18 weeks. However, the activities of glutathione S-transferases (GSTs) of rat liver cytosol were enhanced only at concentrations of 3000 or 6000 ppm BHT. Histochemically, the enhanced GGT activity was localized to hepatocytes surrounding the portal areas. Autoradiographic measurements of DNA synthesis showed that dietary BHT did not increase the level of cell proliferation and the GGT-positive hepatocytes did not exhibit different rates of DNA synthesis from those of GGT-negative cells. Feeding of the liver carcinogen N-2-fluorenylacetamide (FAA) induced foci and nodules of GGT-positive altered cells which exhibited higher rates of DNA synthesis than those of surrounding GGT-negative hepatocytes. Following iron loading, the periportal GGT-positive hepatocytes produced by BHT accumulated cellular iron, whereas the cells in FAA-induced lesions excluded iron. These results suggest that dietary BHT induces GGT activity in periportal hepatocytes without proliferation of the cells and that induction does not represent fetal expression or a preneoplastic alteration.  相似文献   

8.
Immunological properties of ligandin(Lig) and glutathione S-transferase(GST)-A, -AA and -B were investigated for elucidating their subunit relationships. By using either anti-Lig or -AA antibody, GST-B made a clear common precipitin line with Lig or AA in double immunodiffusion and the activity was inhibited intermediately between Lig and AA, whereas Lig and AA reacted very weakly with antibodies to each other. A hybrid between Lig and AA formed by guanidine hydrochloride treatment was identified immunochemically to be GST-B. GST-A had no immunological relationship with any of other three forms.  相似文献   

9.
We propose that the proper evolving unit in enzyme evolution is not a single “fittest molecule”, but a cluster of related variants denoted a “quasi-species”. A distribution of variants provides genetic variability and thereby reduces the risk of inbreeding and evolutionary dead-ends. Different matrices of substrates or activity modulators will lead to different selection criteria and divergent evolutionary trajectories. We provide examples from our directed evolution of glutathione transferases illustrating the interplay between libraries of enzyme variants and ligand matrices in the identification of quasi-species. The ligand matrix is shown to be crucial to the outcome of the search for novel activities. In this sense the experimental system resembles the biological environment in governing the evolution of enzymes.  相似文献   

10.
In this study, feral leaping mullet (Liza saliens) liver cytosolic glutathione S-transferases (GSTs) were investigated and characterized using 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (EA) as substrates. The average GST activities towards CDNB and EA were found to be 1365 +/- 41 and 140 +/- 20 nmol/min per mg protein, respectively. The effects of cytosolic protein amount and temperature ranging from 4 to 70 degrees C on enzyme activities were examined. While both activities towards CDNB and EA showed similar dependence on protein amount, temperature optima were found as 37 and 42 degrees C, respectively. In addition, the effects of pH on GST-CDNB and -EA activities were studied and different pH activity profiles were observed. For both substrates, GST activities were found to obey Michaelis-Menten kinetics with apparent V(max) and K(m) values of 1661 nmol/min per mg protein and 0.24 mM and 157 nmol/min per mg protein and 0.056 mM for CDNB and EA, respectively. Distribution of GST in Liza saliens tissues was investigated and compared with other fish species. Very high GST activities were measured in tissues from Liza saliens such as liver, kidney, testis, proximal intestine, and gills. Moreover, our results suggested that GST activities from Liza saliens would be a valuable biomarker for aquatic pollution.  相似文献   

11.
Sulphobromophthalein (SBP) inhibits isolated glutathione S-transferase of the porcine nodule worm Oesophagostomum dentatum (Od-GST) and reduces larval development in vitro. In this study possible inhibitory effects of various inhibitors were evaluated in an enzymatic (CDNB) assay with isolated Od-GST and in a larval development assay (LDA). Reversibility was tested in the LDA by removing the inhibitor from culture halfway through the cultivation period. SBP, indomethacin and ethacrynic acid inhibited both enzyme activity and larval development in a dose-dependent and reversible manner. HQL-79 also reduced larval development but had only a minor effect on the isolated enzyme. The phospholipase A2 inhibitors dexamethasone and hydrocortisone had no major effect. High thermal stability of Od-GST was demonstrated with increasing activity between 4 and 50 °C. Differences between Od-GST and GST of other organisms indicate structural and possibly functional peculiarities and highlight the potential of such enzymes as targets of intervention.  相似文献   

12.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   

13.
The glutathione transferases (GSTs) mediate the detoxification of a broad spectrum of electrophilic chemicals. We report here the identification and characterisation of a novel naturally occurring transition that changes codon 169 from GGC (Gly) to GAC (Asp) in the human Pi class GST, GSTP1. Expression of the variant in human HepG2 cells led to a small increase in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation compared to the wild-type protein. Asp169 GSTP1-1 expressed at high levels in Escherichia coli displayed a small but significant increase in specific activity towards CDNB compared to Gly169 GSTP1-1. The catalytic efficiency with CDNB was higher for Asp169 GSTP1-1 compared to the wild-type enzyme, although the kinetic constants of the mutant and the wild-type enzyme towards glutathione were not different. Modelling indicated that the mutation does not appear to change protein conformation. The distribution of the genotypes in a normal healthy population (217 individuals) was 94.3% for the Gly/Gly genotype and 5.7% for the Gly/Asp genotype; no Asp/Asp genotypes were detected in this population. The frequency of the Asp169 allele in the only oxidative stress-linked pathology that we have studied to date, i.e. alcoholic liver disease, was not significantly different from healthy controls. In conclusion, we have detected and characterised a novel SNP in GSTP1 that may play a role in modulating the activity of GSTP1-1.  相似文献   

14.
Plant glutathione transferases (GSTs) play a key role in the metabolism of various xenobiotics. In this report, the catalytic mechanism of the tau class GSTU4-4 isoenzyme from Glycine max (GmGSTU4-4) was investigated by site-directed mutagenesis and steady-state kinetic analysis. The catalytic properties of the wild-type enzyme and three mutants of strictly conserved residues (Ser13Ala, Asn48Ala and Pro49Ala) were studied in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction. The results showed that the mutations significantly affect substrate binding and specificity. The effect of Ser13Ala mutation on the catalytic efficiency of the enzyme could be explained by assuming the direct involvement of Ser13 to the reaction chemistry and the correct positioning of GSH and CDNB in the ternary catalytic complex. Asn48 and Pro49 were found to have a direct role on the structural integrity of the GSH-binding site (G-site). Moreover, mutation of Asn48 and Pro49 residues may bring about secondary effects altering the thermal stability and the catalytic activity (kcat) of the enzyme without affecting the nature of the rate-limiting step of the catalytic reaction.  相似文献   

15.
为探明谷胱甘肽S-转移酶(GSTs)在昆虫嗅觉识别中的作用, 本研究采用RT-PCR和RACE方法, 从烟夜蛾Helicoverpa assulta(Guenée)雄虫触角中克隆获得了1个GSTs基因的全长cDNA序列(GenBank登录号为EU289223)。将该基因推导的氨基酸序列与其他物种的GSTs进行同源性比对和系统发育分析, 发现该蛋白属于昆虫特异性Epsilon家族成员, 因此将该基因命名为HaGSTe1。同时从烟夜蛾基因组DNA中克隆获得了该基因序列, 发现序列中含有5个内含子, 长度分别为415,513,296,333和269 bp。利用半定量RT-PCR和实时荧光定量PCR方法对HaGSTe1在雌、 雄虫不同组织的表达进行了定性和定量分析, 结果显示, 该基因在雌、 雄虫的头部(去掉触角和喙)、触角、喙、胸、足、翅以及雌虫的腹部均有表达, 并且在雄虫触角中的表达量最高, 且显著高于雌虫触角, 这种表达情况提示其可能与触角中性信息素及其他外源物质的分解有关。  相似文献   

16.
Zeng QY  Wang XR 《FEBS letters》2005,579(12):2657-2662
Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification in plants. However, there is extremely little information on the molecular characteristics of GSTs in gymnosperms. In a previous study, we cloned a tau class GST (PtGSTU1) from a gymnosperm (Pinus tabulaeformis) for the first time. Based on the N-terminal amino acid sequence identity to the available crystal structures of plant tau GSTs, Ser13, Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 were proposed as glutathione-binding (G-site) residues. The importance of Ser13 as a G-site residue was investigated previously. The functions of Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 are examined in this study through site-directed mutagenesis. Enzyme assays and thermal stability measurements on the purified recombinant PtGSTU1 showed that substitution at each of these sites significantly affects the enzyme's substrate specificity and affinity for GSH, and these residues are essential for maintaining the stability of PtGSTU1. The results of protein expression and refolding analyses suggest that Ile54 is involved in the protein folding process. The findings demonstrate that the aforementioned residues are critical components of active sites that contribute to the enzyme's catalytic activity and structural stability.  相似文献   

17.
A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80–90% homology at the nucleotide and 85–95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200 mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50–70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25–100% in transgenics, while malondialdehyde (MDA) showed a 2–4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5–2.5-fold higher Na+ and 0.4–0.8-fold higher K+ levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress.  相似文献   

18.
Glutathione S-transferase (GST) and multidrug resistance-associated proteins (MRPs) play major roles in drug resistance in melanoma. In this study, we investigated caffeic acid phenethyl ester (CAPE) as a selective GST inhibitor in the presence of tyrosinase, which is abundant in melanoma cells. Tyrosinase bioactivates CAPE to an o-quinone, which reacts with glutathione to form CAPE-SG conjugate. Our findings indicate that 90% CAPE was metabolized by tyrosinase after a 60-min incubation. LC–MS/MS analyses identified a CAPE-SG conjugate as a major metabolite. In the presence of tyrosinase, CAPE (10–25 μM) showed 70–84% GST inhibition; whereas in the absence of tyrosinase, CAPE did not inhibit GST. CAPE-SG conjugate and CAPE-quinone (25 μM) demonstrated ?85% GST inhibition via reversible and irreversible mechanisms, respectively. Comparing with CDNB and GSH, the non-substrate CAPE acted as a weak, reversible GST inhibitor at concentrations >50 μM. Furthermore, MK-571, a selective MRP inhibitor, and probenecid, a non-selective MRP inhibitor, decrease the IC50 of CAPE (15 μM) by 13% and 21%, apoptotic cell death by 3% and 13%, and mitochondrial membrane potential in human SK-MEL-28 melanoma cells by 10% and 56%, respectively. Moreover, computational docking analyses suggest that CAPE binds to the GST catalytic active site. Caffeic acid, a hydrolyzed product of CAPE, showed a similar GST inhibition in the presence of tyrosinase. Although, as controls, 4-hydroxyanisole and l-tyrosine were metabolized by tyrosinase to form quinones and glutathione conjugates, they exhibited no GST inhibition in the absence and presence of tyrosinase. In conclusion, both CAPE and caffeic acid selectively inhibited GST in the presence of tyrosinase. Our results suggest that intracellularly formed quinones and glutathione conjugates of caffeic acid and CAPE may play major roles in the selective inhibition of GST in SK-MEL-28 melanoma cells. Moreover, the inhibition of MRP enhances CAPE-induced toxicity in the SK-MEL-28 melanoma cells.  相似文献   

19.
Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture.  相似文献   

20.
谷胱甘肽S-转移酶(glutathione S-transferase, GST)是一类广泛分布的多功能超家族酶系, 其中Omega家族GST在昆虫体内担负重要生理功能。为探讨飞蝗Locusta migratoria Omega家族GST功能, 利用RT-PCR技术克隆得到1条飞蝗谷胱甘肽S-转移酶Omega家族基因全长cDNA, 命名为LmGSTo1 (GenBank登录号: JQ750592)。该基因开放阅读框长738 bp, 编码245个氨基酸。该酶含有N-端和C-端2个结构域, N-端结构域由5个β-折叠和3个α螺旋组成, 包括4个GSH结合位点; C-端结构域由8个α螺旋组成, 含有5个底物结合位点。Real-time PCR结果表明, LmGSTo1在飞蝗不同龄期均有表达, 在胃盲囊和中肠表达量较低, 在前肠、马氏管、肌肉和脂肪体表达量较高; 溴氰菊酯处理可导致LmGSTo1表达水平显著下降。这些结果为进一步研究LmGSTo1基因功能提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号