首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Shoot cultures of Hedyotis corymbosa, a C3 species, and sugarcane, a C4 species, were used to examine the effects of various CO2 concentrations and two light intensities on growth and photosynthetic rates. The fresh and dry weights of new growth of Hedyotis shoots were higher when grown under the higher light intensity, while differences among shoots grown under different CO2 levels were marginal. After 14 d of growth in various CO2 concentrations, no significant differences could be observed in the newly produced leaves of Hedyotis with respect to stomatal distribution and number of mesophyll cell layers. Shoots grown under high light intensity did not show higher rates of photosynthesis than those grown under low light intensity. Also, sugarcane shoots grown in a CO2-enriched environment did not have higher photosynthetic rates, perhaps because the C4 pathway is less sensitive to the ambient CO2 concentration. The quantum yield of Hedyotis shoots grown on medium with 20 g l−1 sucrose was lower than that of shoots on lower sucrose concentrations, supporting the view that photosynthesis is inhibited by high levels of sucrose. Our results suggest that Hedyotis shoots in culture exhibit some form of acclimation to high CO2. so that there is no net gain in productivity by photosynthesis.  相似文献   

2.
J. Silvola  U. Ahlholm 《Oecologia》1992,91(2):208-213
Summary Willows (Salix x dasyclados) were grown for 4 months in growth chambers at four nutrient and CO2 levels, and photosynthesis measurements were made during the latter half of this period. Photosynthesis became saturated at lower light intensities at low CO2 concentrations than at higher ones. The effect of CO2 concentration on photosynthesis was greater at higher temperatures. The willows grown at the highest CO2 concentration (1000 ppm) had a lower photosynthetic capacity than the others when measured at various concentrations. The effect of nutrient status on photosynthesis clearly increased with rising CO2 concentrations. Although photosynthetic acclimation took place to a certain extent at higher CO2 concentrations, photosynthesis still remained higher the higher the growth concentration was. At each CO2 level photosynthesis increased contemporaneously with leaf nitrogen content, but at each fertilization level a rise in CO2 concentration slightly increased photosynthesis and reduced the nitrogen content. The relative increase in photosynthesis achieved by a rise in CO2 was greater than the corresponding increase in biomass growth, whereas the effect of fertilization was greater on biomass growth than on the rate of photosynthesis in the same willows.  相似文献   

3.
Plants in natural environments must cope with diverse, highly dynamic, and unpredictable conditions. They have mechanisms to enhance the capture of light energy when light intensity is low, but they can also slow down photosynthetic electron transport to prevent the production of reactive oxygen species and consequent damage to the photosynthetic machinery under excess light. Plants need a highly responsive regulatory system to balance the photosynthetic light reactions with downstream metabolism. Various mechanisms of regulation of photosynthetic electron transport under stress have been proposed, however the data have been obtained mainly under environmentally stable and controlled conditions. Thus, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. In this review, first I describe the magnitude of environmental fluctuations under natural conditions. Next, I examine the effects of fluctuations in light intensity, CO2 concentration, leaf temperature, and relative humidity on dynamic photosynthesis. Finally, I summarize photoprotective strategies that allow plants to maintain the photosynthesis under stressful fluctuating environments. The present work clearly showed that fluctuation in various environmental factors resulted in reductions in photosynthetic rate in a stepwise manner at every environmental fluctuation, leading to the conclusion that fluctuating environments would have a large impact on photosynthesis.  相似文献   

4.
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase.Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques.Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry.Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.  相似文献   

5.
The Effect of Oxygen Concentration on Photosynthesis in Higher Plants   总被引:2,自引:0,他引:2  
The influence of oxygen concentration in the range 0–21% on photosynthesis in intact leaves of a number of higher plants has been investigated. Photosynthetic Co2 fixation of higher plants is markedly inhibited by oxygen in concentrations down to less than 2%. The inhibition increases with oxygen concentration and is about 30% in an atmosphere of 21% O2 and 0.03% Co.2. Undoubtedly, therefore, oxygen in normal air exerts a strong inhibitory effect on photosynthetic Co2 fixation of land plants under natural conditions. The inhibitory effect of oxygen is rapidly produced and fully reversible. The degree of inhibition is independent of light intensity. The quantum yield for Co2 fixation, i.e. the slope of the linear part of the curve for Co2 uptake versus absorbed quanta, is inhibited to the same degree as the light saturated rate at all oxygen concentrations studied. Diverse species of higher plants, varying greatly in photosynthetic response to light intensity and Co2 concentration, and with light saturated roles of Co2 fixation differing by a factor of more than 10 times, show a remarkable similarity in their response to oxygen concentration. By contrast, when studied under the same conditions as the higher plants, the green algae Chlorella and Ulva did not show-any measurable inhibition of photosynthetic Co2 fixation. Similarity, the increase in fluorescence intensity with increasing oxygen concentrations found in higher plants also was not seen in Chlorella. The present results, together with previous data on the photosynthetic response of algae to oxygen concentration, indicate that the photosynthetic apparatus of higher plants differs considerably from that of algae in its sensitivity to oxygen. The inhibitory effect of oxygen on photosynthetic Co2 fixation in higher plants is somewhat higher at wavelengths which excite preferentially photosystem I. Also, the Emerson enhancement of Co2 fixation measured when a far red beam of low intensity is imposed on a background of red light is greater under low oxygen concontrution than under air. Measurements of reversible light-induced absorbance changes reveal that the change at 591 nm, probably caused by pla.stocyanin, is affected by oxygen concentration only if photosystem II is excited. the reducing effect on plastocyanin, caused by excitation of this system, decreases with increasing oxygen concentration. From these results it is suggested that a possible site of the inhibition by oxygen is in the electron carrier chain between the two photosystems. Oxygen might act as an electron acceptor at this site, causing reducing power to react back with molecular oxygen. However, this hypothesis does not account for equal inhibitions of the quantum yield and the light saturated rate of photosynthetic CO2 uptake. Through the photosynthetic process plants take up carbon dioxide and evolve oxygen. The present high concentration of molecular oxygen in the atmosphere is generally considered to have arisen from the activity of photo-synthetic organisms. The effect of oxygen concentration would seem, therefore, to he a problem of great interest, not only in the field of the biophysics and biochemistry of photosynthesis, but in ecology and other branches of biology as well. It was discovered by Warburg (1920) that high concentrations of oxygen inhibit the rate of photosynthetic oxygen evolution in the unicellular alga Chlorella. Since then, it has been confirmed by various authors that oxygen cconcentrations in the range 21–100 per cent have a marked inhibitory effect on photosynthesis, particularly at saturating light intensities. There is some evidence that under conditions when carbon dioxide concentration limits photosynthesis, the inhibition may become obvious even in 21 per cent oxygen. The inhibition has not been considered to operate at low light intensities. A review on the subject has been given by Turner and Brittain (1962). Various hypotheses have been put forward to explain the inhibitory effect of oxygen, commonly referred to as the Warhurg effect. Some authors favor the idea of enzyme inhibition; Turner et al. (1958) that one or more enzymes of the carbon reduction cycle are inactivated by oxygen: lirianlals (1962) that enzymes of the oxygen-evolving complex are inhihited. Other hypotheses concern back-reactions in which molecular oxygen is taken up, thus reversing the photosynthetic process. These reactions include photo-oxidation, photorespiration, and the Mehler reaction (Tamiya et al., 1957). At present, there is no generally accepted hypothesis explaining the effect. The often conflicting results on which these hypotheses were based have been obtained mostly on algae. The first observation of an inhibitory effect on photosynthesis in a higher plant was made hy McAlister and Myers (1940) in wheat leaves. They found that the photosyntlietic CO2 uptake was markedly lower in air than in an atmosphere of about 0.5 per cent oxygen. At the CO2 concentration used (0.03%) the inhibition was present both at high and moderate light intensities. No data were obtained at low light intensities. Although the study of the effect of oxygen concentration on photosynthesis in higher plants would seem to be of great interest, particularily since the natural environment of most land plants is an atmosphere with an oxygen content of 21 per cent, it has attracted very little attention. To the author's knowledge no thorough investigation on the subject has been published. The present investigalion is directed toward elucidatirng the photosynthetic response of higher plants to oxygen concentrations up to that of normal air. Data are presented showing that the photosynthetic CO2 fixation in intact leaves of higher plants, regardless of light intensity, is strongly inhibited by oxygen in normal air, and that the pholosynthetic response to oxygen differs considerably from that of green algae. The present investigalion is directed toward elucidatirng the photosynthetic response of higher plants to oxygen concentrations up to that of normal air. Data are presented showing that the photosynthetic CO2 fixation in intact leaves of higher plants, regardless of light intensity, is strongly inhibited by oxygen in normal air, and that the pholosynthetic response to oxygen differs considerably from that of green algae.  相似文献   

6.
Chlorophyll fluorescence analysis is one of the most convenient and widespread techniques used to monitor photosynthesis performance in plants. In this work, after a brief overview of the mechanisms of regulation of photosynthetic electron transport and protection of photosynthetic apparatus against photodamage, we describe results of our study of the effects of actinic light intensity on photosynthetic performance in Tradescantia species of different ecological groups. Using the chlorophyll fluorescence as a probe of photosynthetic activity, we have found that the shade-tolerant species Tradescantia fluminensis shows a higher sensitivity to short-term illumination (≤20 min) with low and moderate light (≤200 μE m−2 s−1) as compared with the light-resistant species Tradescantia sillamontana. In T. fluminensis, non-photochemical quenching of chlorophyll fluorescence (NPQ) and photosystem II operational efficiency (parameter ΦPSII) saturate as soon as actinic light reaches ≈200 μE m−2 s−1. Otherwise, T. sillamontana revealed a higher capacity for NPQ at strong light (≥800 μE m−2 s−1). The post-illumination adaptation of shade-tolerant plants occurs slower than in the light-resistant species. The data obtained are discussed in terms of reactivity of photosynthetic apparatus to short-term variations of the environment light.  相似文献   

7.
E. Gauhl 《Oecologia》1976,22(3):275-286
Summary Within the widespread species Solanum dulcamara, contrasting ecotypes were found which are physiologically adapted to the light intensities prevailing in their natural habitats. When grown under a high light intensity, an ecotype from a shaded habitat exhibits signs of damage. Another one from an exposed habitat has higher rates of photosynthetic CO2 uptake when grown under strong as compared to weak light and does not show damage. This differential response becomes even more evident when leaves of both ecotypes are grown to maturity under weak light and are subsequently subjected to strong light for some time. The quantum requirement for photosynthesis increases in the shade-, but not in the sun-ecotype. The sun type increases its rate of photosynthesis under saturating light intensities after a few days in strong light.No significant difference in physical resistances to gas diffusion could be found to explain the highly differing rates of photosynthesis. With the increase in photosynthetic capacity in leaves of the sun type, protein content, activity of RuDP carboxylase, and concentration of Fraction I protein increased likewise. It is suggested that de novo synthesis of photosynthetic enzymes in fully expanded leaves of the sun ecotype following treatment with strong light is the cause of its increased capacity for CO2 fixation.  相似文献   

8.
Analysis of leaf-level photosynthetic responses of 39 tree species grown in elevated concentrations of atmospheric CO2 indicated an average photosynthetic enhancement of 44% when measured at the growth [CO2]. When photosynthesis was measured at a common ambient [CO2], photosynthesis of plants grown at elevated [CO2] was reduced, on average, 21% relative to ambient-grown trees, but variability was high. The evidence linking photosynthetic acclimation in trees with changes at the biochemical level is examined, along with anatomical and morphological changes in trees that impact leaf- and canopy-level photosynthetic response to CO2 enrichment. Nutrient limitations and variations in sink strength appear to influence photosynthetic acclimation, but the evidence in trees for one predominant factor controlling acclimation is lacking. Regardless of the mechanisms that underlie photosynthetic acclimation, it is doubtful that this response will be complete. A new focus on adjustments to rising [CO2] at canopy, stand, and forest scales is needed to predict ecosystem response to a changing environment.Abbreviations A/Ci photosynthesis as a function of internal [CO2] - Jmax maximum rate of electron transport - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - Vcmax maximum rate of carboxylation The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

9.
10.

Background and Aims

The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.

Methods

Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.

Key Results

Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.

Conclusions

Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.  相似文献   

11.
The regulation of photosynthesis through changes in light absorption, photochemistry, and carboxylation efficiency has been studied in plants grown in different environments. Iron deficiency was induced in sugar beet (Beta vulgaris L.) by growing plants hydroponically in controlled growth chambers in the absence of Fe in the nutrient solution. Pear (Pyrus communis L.) and peach (Prunus persica L. Batsch) trees were grown in field conditions on calcareous soils, in orchards with Fe deficiency-chlorosis. Gas exchange parameters were measured in situ with actual ambient conditions. Iron deficiency decreased photosynthetic and transpiration rates, instantaneous transpiration efficiencies and stomatal conductances, and increased sub-stomatal CO2 concentrations in the three species investigated. Photosynthesis versus CO2 sub-stomatal concentration response curves and chlorophyll fluorescence quenching analysis revealed a non-stomatal limitation of photosynthetic rates under Fe deficiency in the three species investigated. Light absorption, photosystem II, and Rubisco carboxylation efficiencies were down-regulated in response to Fe deficiency in a coordinated manner, optimizing the use of the remaining photosynthetic pigments, electron transport carriers, and Rubisco.  相似文献   

12.
A common observation in plants grown in elevated CO2 concentration is that the rate of photosynthesis is lower than expected from the dependence of photosynthesis upon CO2 concentration in single leaves of plants grown at present CO2 concentration. Furthermore, it has been suggested that this apparent down regulation of photosynthesis may be larger in leaves of plants at low nitrogen supply than at higher nitrogen supply. However, the available data are rather limited and contradictory. In this paper, particular attention is drawn to the way in which whole plant growth response to N supply constitutes a variable sink strength for carbohydrate usage and how this may affect photosynthesis. The need for further studies of the acclimation of photosynthesis at elevated CO2 in leaves of plants whose N supply has resulted in well-defined growth rate and sink activity is emphasised, and brief consideration is made of how this might be achieved.Abbreviations A rate of CO2 assimilation - Ci internal CO2 concentration - PCR photosynthetic carbon reduction - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

13.
Algae are interesting potential sources of biodiesel, although research is still needed to develop efficient large scale productions. One major factor affecting productivity is light use efficiency. The effect of different light regimes on the seawater alga Nannochloropsis gaditana was accessed monitoring growth rate and photosynthetic performances. N. gaditana showed the capacity of acclimating to different light intensities, optimizing its photosynthetic apparatus to illumination. Thanks to this response, N. gaditana maintained similar growth rates under a wide range of irradiances, suggesting that this organism is a valuable candidate for outdoor productions in variable conditions. In the conditions tested here, without external CO2 supply, light intensity alone was not found to be a major signal affecting lipids accumulation showing the absence of a direct regulatory link between the light stress and lipids accumulation. Strong illumination can nevertheless indirectly influences lipid accumulation if combined with other stresses or in the presence of excess CO2.  相似文献   

14.
The photosynthetic characteristics of four transgenic rice lines over-expressing rice NADP-malic enzyme (ME), and maize phosphoenolpyruvate carboxylase (PC), pyruvate,orthophosphate dikinase (PK), and PC+PK (CK) were investigated using outdoor-grown plants. Relative to untransformed wild-type (WT) rice, PC transgenic rice exhibited high PC activity (25-fold increase) and enhanced activity of carbonic anhydrase (more than two-fold increase), while the activity of ribulose-bisphosphate carboxylase/oxygenase (Rubisco) and its kinetic property were not significantly altered. The PC transgenic plants also showed a higher light intensity for saturation of photosynthesis, higher photosynthetic CO2 uptake rate and carboxylation efficiency, and slightly reduced CO2 compensation point. In addition, chlorophyll a fluorescence analysis indicates that PC transgenic plants are more tolerant to photo-oxidative stress, due to a higher capacity to quench excess light energy via photochemical and non-photochemical means. Furthermore, PC and CK transgenic rice produced 22–24% more grains than WT plants. Taken together, these results suggest that expression of maize C4 photosynthesis enzymes in rice, a C3 plant, can improve its photosynthetic capacity with enhanced tolerance to photo-oxidation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The effects on photosynthesis of CO2 and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350?ml?m?3), and doubling the CO2 concentration (700?ml?m?3) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700?ml?m?3 CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.  相似文献   

16.
A close correlation between stomatal conductance and the steady-state photosynthetic rate has been observed for diverse plant species under various environmental conditions. However, it remains unclear whether stomatal conductance is a major limiting factor for the photosynthetic rate under naturally fluctuating light conditions. We analysed a SLAC1 knockout rice line to examine the role of stomatal conductance in photosynthetic responses to fluctuating light. SLAC1 encodes a stomatal anion channel that regulates stomatal closure. Long exposures to weak light before treatments with strong light increased the photosynthetic induction time required for plants to reach a steady-state photosynthetic rate and also induced stomatal limitation of photosynthesis by restricting the diffusion of CO2 into leaves. The slac1 mutant exhibited a significantly higher rate of stomatal opening after an increase in irradiance than wild-type plants, leading to a higher rate of photosynthetic induction. Under natural conditions, in which irradiance levels are highly variable, the stomata of the slac1 mutant remained open to ensure efficient photosynthetic reaction. These observations reveal that stomatal conductance is important for regulating photosynthesis in rice plants in the natural environment with fluctuating light.  相似文献   

17.
Phosphoenolpyruvate carboxylase (PEPC) was overproduced in the leaves of rice plants by introducing the intact maize C4-specific PEPC gene. Maize PEPC in transgenic rice leaves underwent activity regulation through protein phosphorylation in a manner similar to endogenous rice PEPC but contrary to that occurring in maize leaves, being downregulated in the light and upregulated in the dark. Compared with untransformed rice, the level of the substrate for PEPC (phosphoenolpyruvate) was slightly lower and the product (oxaloacetate) was slightly higher in transgenic rice, suggesting that maize PEPC was functioning even though it remained dephosphorylated and less active in the light. 14CO2 labeling experiments indicated that maize PEPC did not contribute significantly to the photosynthetic CO2 fixation of transgenic rice plants. Rather, it slightly lowered the CO2 assimilation rate. This effect was ascribable to the stimulation of respiration in the light, which was more marked at lower O2 concentrations. It was concluded that overproduction of PEPC does not directly affect photosynthesis significantly but it suppresses photosynthesis indirectly by stimulating respiration in the light. We also found that while the steady-state stomatal aperture remained unaffected over a wide range of humidity, the stomatal opening under non-steady-state conditions was destabilized in transgenic rice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01 mM) and two levels of CO2 concentration (ambient 400 and elevated 800 μmol mol−1) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.  相似文献   

19.
揭示作物光合作用、蒸腾作用和水分利用效率(WUE)对大气CO2浓度变化的响应, 对预测未来大气CO2浓度升高条件下作物生产力与需水规律的变化具有重要意义。在自然CO2浓度、CO2倍增和倍增后恢复到自然CO2浓度3种情况下, 对大豆(Glycine max)、甘薯(Ipomoea batatas)、花生(Arachis hypogaea)、水稻(Oryza sativa)、棉花(Gossypium hirsutum)、玉米(Zea mays)、高粱(Sorghum vulgare)和谷子(Setaria italica) 8种作物的气体交换参数进行了研究。结果表明: CO2浓度倍增可以提高光合速率, 降低蒸腾速率, 从而提高WUE, 其中光合速率提高的贡献更大; C3比C4作物的光合速率、WUE增幅大, C3作物光合速率提高对WUE的贡献大于C4作物; 通过对比倍增后恢复到自然CO2浓度时气体交换参数随环境条件变化的响应确定了其内在调控机制; 倍增后恢复到自然CO2浓度时作物光合速率低于自然CO2浓度下的光合速率, 而蒸腾速率无明显差异。由此判断: CO2浓度倍增下存在光合下调现象, 这可能是由于Rubisco酶蛋白含量、活化水平和比活性降低等“非气孔因素”造成的, 并非由气孔导度的降低引起的。  相似文献   

20.
Nitrogenase activity and the rate of photosynthesis were measured simultaneously in Azolla by a continuous gas flow system. The mode of interaction between light, photosynthesis and nitrogenase activity was analysed.Nitrogenase activity dropped off when either Azolla plants or the cyanobiont Anabaena were transferred from light to dark. This decline was immediate and was independent of length or intensity of the prior light phase. Reillumination restored nitrogenase activity.Nitrogenase activity did not depend on the rate of photosynthesis at light intensities below 10 μE m−2 s−1. Its activity was saturated at 200 μE m−2 s−1 while CO2 fixation was saturated at a light intensity of 850 μE m−2 s−1. Azolla photosynthetic activity followed the absorption spectrum of chlorophyll a, while nitrogenase activity markedly increased between 690 and 710 nm. Inhibition of photosynthesis by DCMU was accompanied by an increase in nitrogenase activity. These results suggest direct light regulation of nitrogenase activity in Azolla independent of CO2 fixation, and a possible inhibition of nitrogenase activity by the oxygen produced in photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号