首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the zinc (Zn) nutritional status on the rate of phytosiderophore release was studied in nutrient solution over 20 days in four bread wheat (Triticum aestivum cvs. Kiraç-66, Gerek-79, Aroona and Kirkpinar) and four durum wheat (Triticum durum cvs. BDMM-19, Kunduru-1149, Kiziltan-91 and Durati) genotypes differing in Zn efficiency.Visual Zn deficiency symptoms, such as whitish-brown necrosis on leaves and reduction in plant height appeared first and more severe in Zn-inefficient durum wheat genotypes Kiziltan-91, Durati and Kunduru-1149. Compared to the bread wheat genotypes, all durum wheat genotypes were more sensitive to Zn deficiency. BDMM-19 was the least affected durum wheat genotype. Among the bread wheat genotypes, Kirkpinar was the most sensitive genotype. In all genotypes well supplied with Zn, the rate of phytosiderophore release was very low and did not exceed 1 mol 32 plants-1 3h-1, or 0.5 mol g-1 root dry wt 3h-1. However, under Zn deficiency, with the onset of visual Zn deficiency symptoms, the release of phytosiderophores was enhanced in bread wheat genotypes up to 7.5 mol 32 plants-1 3h-1, or 9 mol g-1 root dry wt 3h-1, particularly in Zn-efficient Kiraç-66, Gerek-79 and Aroona. In contrast to bread wheat genotypes, phytosiderophore release in Zn-deficient durum wheat genotypes remained at a very low rate. Among the durum wheat genotypes BDMM-19 had highest rate of phytosiderophore release. HPLC analysis of root exudates showed that 2-deoxymugineic acid (DMA) is the dominating phytosiderophore released from roots of Zn-efficient genotypes. In root extracts concentration of DMA was also much higher in Zn-efficient than in inefficient genotypes. The results demonstrate that enhanced synthesis and release of phytosiderophores at deficient Zn supply is involved in Zn efficiency in wheat genotypes. It is suggested that the expression of Zn efficiency mechanism is causally related to phytosiderophore-mediated enhanced mobilization of Zn from sparingly soluble Zn pools and from adsorption sites, both in the rhizosphere and plants.  相似文献   

2.
Rengel  Z.  Römheld  V. 《Plant and Soil》2000,222(1-2):25-34
Tolerance to Zn deficiency in wheat germplasm may be inversely related to uptake and transport of Fe to shoots. The present study examined eight bread (Triticum aestivum) and two durum (T. turgidum L. conv. durum) wheat genotypes for their capacity to take up and transport Fe when grown under either Fe or Zn deficiency. Bread wheat genotypes Aroona, Excalibur and Stilleto showed tolerance to Zn and Fe deficiency, while durum wheat genotypes are clearly less tolerant to either deficiency. Roots of bread wheats tolerant to Zn deficiency exuded more phytosiderophores than sensitive bread and durum genotypes. Greater amounts of phytosideophores were exuded by roots grown under Fe than Zn deficiency. A relatively poor relationship existed between phytosiderophore exudation or the Fe uptake rate and relative shoot growth under Fe deficiency. At advanced stages of Zn deficiency, genotypes tolerant to Zn deficiency (Aroona and Stilleto) had a greater rate of Fe uptake than other genotypes. Zinc deficiency depressed the rate of Fe transport to shoots in all genotypes in early stages, while advanced Zn deficiency had the opposite effect. Compared with Zn-sufficient plants, 17-day-old Zn-deficient plants of genotypes tolerant to Zn deficiency had a lower rate of Fe transport to shoots, while genotypes sensitive to Zn deficiency (Durati, Yallaroi) had the Fe transport rate increased by Zn deficiency. A proportion of total amount of Fe taken up that was transported to shoots increased with duration of either Fe or Zn deficiency. It is concluded that greater tolerance to Zn deficiency among wheat genotypes is associated with the increased exudation of phytosiderophores, an increased Fe uptake rate and decreased transport of Fe to shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Protective effect of exogenous wheat germ agglutinin (WGA) on wheat seedling (Triticum aestivum L.) during salinity stress was studied. In particular, we examined the state of pro- and antioxidant systems as well as the level of peroxide oxidation of lipids and electrolyte leakage under control conditions and when stressed with NaCl. Generation of superoxide anions and activity of both superoxide dismutase (SOD) and peroxidase increased during saline stress. Accumulation of O2 ·− resulted in peroxide oxidation of lipids and electrolyte leakage in response to stress. The injurious effect of salinity on root growth of seedlings was manifested by a decreased mitotic index (MI) in apical root meristem. This study show that WGA pretreatment decreased salt-induced superoxide anion generation, SOD and peroxidase activities, levels of lipid peroxidation and electrolytes leakage as well as correlating with a reduction in the inhibition of root apical meristem mitotic activity in salt-treated plants. This suggests that exogenous WGA reduced the detrimental effects of salinity-induced oxidative stress in wheat seedlings. Thus WGA effects on a balance of reactive oxygen species (ROS) and activities of antioxidant enzymes may provide an important contribution to a range of the defense reactions induced by this lectin in wheat plants.  相似文献   

4.
The effect of soil salinity and soil moisture on the growth and yield of maxipak wheat (Triticum aestivum L.) was studied in a lath-house experiment in whih, chloride-sulphate salt mixtures were used to artificially salinize a sandy loam soil from Al-Jadyriah Baghdad. Five soil salinity levels of ECe's equal to 1.7 (Control) 4.2, 5.8, 8.1, 9.4 and 11.0dSm–1 were prepared and used at 3 levels of available soil moisture depletion, namely, 25, 50, and 75% as determined by weight. Both growth (vegetative) and yield components were studied throughout the growing season.Results showed that increasing the soil salinity from 1.7 to 11.0 dSm–1, and decreasing the available soil water from 75 to 25% resulted in independent and significant decreases in Mazipak wheat growth and yield components at different stages of plant development. Root growth showed more sensitivity to both available soil water and soil salinity level than other components. It has been concluded that at soil salinity levels of more than 8.0 dSm–1, available soil water became a limiting factor on wheat growth and the maintenance of 75% of available soil water during the growth period is recommended to obtain satisfactory grain yield.  相似文献   

5.
Variation in nitrogen use efficiency among soft red winter wheat genotypes   总被引:5,自引:0,他引:5  
Summary Nitrogen use efficiency (NUE), defined as grain dry weight or grain nitrogen as a function of N supply, was evaluated in 25 soft red winter wheat genotypes for two years at one location. Significant genotypic variation was observed for NUE, nitrogen harvest index, and grain yield. Genotype x environment interaction for these traits was not significant. Several variables including N uptake efficiency (total plant N as a function of N supply), grain harvest index, and N concentration at maturity were evaluated for their role in determining differences in NUE. Nitrogen uptake efficiency accounted for 54% of the genotypic variation in NUE for yield and 72% of the genotypic variation in NUE for protein. A path coefficient analysis revealed that the direct effect of uptake efficiency on NUE was high relative to indirect effects.The investigation reported in this paper (No. 85-3-122) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with approval of the Director  相似文献   

6.
The objective of this study was to determine whether a series of Kenyan bread wheat cultivars differed in tolerance to aluminum toxicity. Fourteen Kenyan wheat cultivars representing current and former widely grown cultivars of diverse pedigree origin, and two control cultivars, Maringa (Al-tolerant) and Siete Cerros (Al-susceptible), were tested in solution cultures with 0 (control), 148, 593, and 2370 M Al at pH 4.6. Highly significant (p0.01) differences in seedling growth were observed among cultivars for root mass, root length and root tolerance index (RTI). Significant (p0.05) cultivar × treatment interactions were observed for root mass and RTI. All characters were negatively affected by increased Al concentration, with root length and root mass being affected the most. RTI is a commonly used index which measures the relative performance of individual cultivars with and without aluminum stress. High levels of tolerance to Al were identified in the Kenyan cultivars by evaluating RTI with this simple nutrient solution technique. Romany and Kenya Nyumbu had RTI values approaching those of the Al tolerant Brazilian cultivar Maringa, a spring wheat standard that has been used for high Al tolerance.  相似文献   

7.
The effect of soil waterlogging and nutrient supply on plant nutrient accumulation and distribution was investigated for two genotypes of winter wheat (Triticum aestivum L.) differing in waterlogging resistance, Bayles and Savannah. Plants were grown in waterlogged or drained sand and fertilized with half-strength or full-strength Hoagland's solution.Waterlogging reduced the concentrations of N, P, K, Mg, and Zn in leaves and stems and increased the concentrations of those elements in the root system. The effects were greater for waterlogging-sensitive Bayles than for waterlogging-resistant Savannah. Higher concentrations of Fe and Mn were found in waterlogged plants compared to the control plants for sensitive Bayles. Waterlogging increased the proportion of N and Zn in the root system and decreased that of K in stems for Bayles. The proportion of Fe increased in leaves and stems for Bayles and Savannah under waterlogged conditions, but to a greater extent for Bayles. Doubling the concentrations of all major and minor nutrient elements supplied to the waterlogged rooting medium improved plant nutrient status and enhanced plant dry matter production.  相似文献   

8.
Summary Triticum aestivum cv. Chinese Spring wheat,Elytrigia elongatum (tall wheatgrass), and theTriticum-Elytrigia amphiploid were grown in complete nutrient culture containing, in addition, 0, 40, 80 and 120 mM NaCl. The 3 genotypes responded quite differently to increasing salinity; the Na concentration of wheat shoots increased in direct proportion to the increase in salinity of the external medium whereas the Elytrigia response was interpreted as showing high affinity for Na at low external Na (40 mM) but comparative exclusion of Na at high salinities (120 mM). In contrast, Na levels of the amphiploid were less than those of either wheat or Elytrigia under both low and high salinities. Thus the amphiploid behaved like wheat at 40 mM NaCl but more like Elytrigia at 120 mM NaCl because Na transport to the amphiploid shoot was restricted over the whole salinity range. The K concentration of the amphiploid shoot at high salinities was significantly greater than the K concentrations of either wheat or Elytrigia.  相似文献   

9.
Leaf micromorphological traits and some physiological parameters with potential relevance to drought tolerance mechanisms were investigated in four selected winter wheat varieties. Plants were subjected to two cycles of drought treatment at anthesis. Yield components confirmed contrasting drought-sensitive and -tolerant behavior of the genotypes. Drought tolerance was associated with small flag leaf surfaces and less frequent occurrence of stomata. Substantial variation of leaf cuticular thickness was found among the cultivars. Thin cuticle coincided with drought sensitivity and correlated with a high rate of dark-adapted water loss from leaves. Unlike in Arabidopsis, thickening of the cuticular matrix in response to water deprivation did not occur. Water stress induced epicuticular wax crystal depositions preferentially on the abaxial leaf surfaces. According to microscopy and electrolyte leakage measurements from leaf tissues, membrane integrity was lost earlier or to a higher extent in sensitive than in tolerant genotypes. Cellular damage and a decline of relative water content of leaves in sensitive cultivars became distinctive during the second cycle of water deprivation. Our results indicate strong variation of traits with potential contribution to the complex phenotype of drought tolerance in wheat genotypes. The maintained membrane integrity and relative water content values during repeated water limited periods were found to correlate with drought tolerance in the selection of cultivars investigated.  相似文献   

10.
The mechanism of boron (B) uptake in wheat was studied using two genotypes with known differences in their ability to accumulate B. Influx and efflux of B was measured in the roots of intact 21 d old plants.Roots grown in 15 M B, when transferred to solutions containing 1mM B showed a rapid increase in B content for up to 60 min, after which no further increase was evident up to 4 h. No genotypic difference in B influx was apparent over these time periods. Roots grown in 1mM B for 7 d and then rinsed in B-free solutions quickly lost most of B that they contained within 1 hour; little further efflux was observed over the following three hours. As with the influx, no genotypic difference in B flux was evident.It is suggested that the lack of genotypic difference in the short-term B fluxes could be due to a masking effect of extracellular B bound in the cell walls of the roots.Department of Botany, University of Adelaide  相似文献   

11.
The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.  相似文献   

12.
Summary Osmotic and specific ion effect are the most frequently mentioned mechanisms by which saline substrates reduce plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the drought and/or salt tolerance of the plant under study. We studied the effects of several single salts of Na+ and Ca2+−NaCl, NaNO3, Na2SO4, NaHCO3, Na2CO3, and Ca(NO3)2—on the germination and root and coleoptile growth of two wheat (Triticum aestivum L.) cultivars, TAM W-101 and Sturdy, the former being more drought tolerant than the latter. The concentrations used were: 0, 0.02, 0.04, 0.08, 0.16, and 0.32 mol L−1. Significant two- and three-way interactions were observed between cultivar, kind of salt, and salt concentration for germination, growth of coleoptile and root, and root/coleoptile ratio. Salts differed significantly (P<0.001) in their effect on seed germination, coleoptile and root growth of both cultivars. Germination of TAM W-101 seeds was consistently more tolerant than that of Sturdy to NaCl, CaCl2, Ca(NO3)2, and NaHCO3 salts at concentrations of 0.02, 0.04, 0.08, 0.16 mol L−1. The osmotic potential, at which the germination of wheat seeds was reduced to 50% of that of the control, was different depending on the kind of salt used in the germination medium. NaCl at low concentrations (0.02 and 0.04 mol L−1) stimulated the germination of both wheat cultivars. At concentrations of 0.02 to 0.16 mol L−1, Ca2+ salts (CaCl2 and Ca(NO3)2) were consistently more inhibitory than the respective Na+ salts (NaCl and NaNO3) for germination of Sturdy. This did not consistently hold true for TAM W-101. Among the Na+ salts, NaCl was the least toxic and NaHCO3 and Na2CO3 were the most toxic for seed germination. Root and coleoptile (in both wheat cultivars) differed in their response to salts. This differential response of coleoptile and root to each salt resulted in seedlings with a wide range of root/coleoptile ratios. For example, the root/coleoptile ratio of cultivar TAM W-101 changed from 2.09 (in the control) to 3.77, 3.19, 2.8, 2.44, 1.31, 0.32, and 0.0 when subjected to 0.08 mol L−1 of Na2SO4, NaCl, CaCl2, NaNO3, Ca(NO3)2, NaHCO3, and Na2CO3, respectively. Na2CO3 at 0.08 mol L−1 inhibited root growth to such an extent that germinated wheat seeds contained coleoptile but no roots. The data indicate that, apart from the clear and more toxic effects of NaHCO3 and Na2CO3 and lesser toxic effect of NaCl on germination and seedling growth, any toxicity-ranking of other salts done at a given concentration and for a given tissue growth may not hold true for other salt concentrations, other tissues and/or other cultivars. The more drought-tolerant TAM W-101, when compared to the less drought tolerant Sturdy, showed higher tolerance (at most concentrations) to NaCl, CaCl2, Ca(NO3)2 and NaHCO3 during its seed germination and to Na2SO4 and CaCl2 for its root growth. This supports other reports that some drought-tolerant wheat cultivars are more tolerant to NaCl. In contrast, the coleoptile growth of drought-sensitive Sturdy was noticeably more tolerant to NaNO3, Ca(NO3)2 and NaHCO3 than that of drought-tolerant TAM W-101. Based on the above and the different root/coleoptile ratios observed in the presence of various salts, it is concluded that in these wheat cultivars: a) coleoptile and root tissues are differently sensitive to various salts, and b) at the germination stage, tolerance to certain salts is higher in the more drought-tolerant cultivar.  相似文献   

13.
14.
A. Shaviv  J. Hagin 《Plant and Soil》1993,154(1):133-137
Wheat (Triticum aestivum L.) was grown to maturity in a pot experiment in a calcareous silty sand soil. N was applied at two levels as granulated N-P fertilizers, amended or not with nitrification inhibitors (1% and 5% DCD, 1% N-serve). Potassium as KCl was given at three levels of application. P was applied at a uniform rate. Two levels of salinity were obtained by using the soil as such (EC= 0.3 mmho/cm) and by adding NaCl to the same soil (EC=2.4 mmho/cm). 1% DCD and 1% N-serve treatments gave significantly higher wheat grain yields and N-uptake than the other ones. Nitrate content of leachates indicated a prevalent nitrate nutrition in the treatment without nitrification inhibitors. The 5% DCD treatment showed a yield depression. In the lower N level treatments, a significant yield increase, generated by 1% DCD and N-serve was found in the salinized soil as compared to the non-saline soil. Soil salinity reduced N-uptake when nitrification inhibitors were not present. In treatments having the inhibitors, N-uptake was equal or greater in the salinized than in the non saline soil. An enhanced ammonium nutrition increased the P uptake.  相似文献   

15.
16.
Erenoglu  B.  Nikolic  M.  Römheld  V.  Cakmak  I. 《Plant and Soil》2002,241(2):251-257
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat.  相似文献   

17.
Molecular analysis of the transgenes bar and gus was carried out over successive generations in six independent transgenic lines of wheat, until the plants attained homozygosity. Data on expression and integration of the transgenes is presented. Five of the lines were found to be stably transformed, duly transferring the transgenes to the next generation. The copy number of the transgenes varied from one to five in the different lines. One line was unstable, first losing expression of and then eliminating both the transgenes in R3 plants. Although the gus gene was detected in all the lines, GUS expression had been lost in R2 plants of all but one line. Rearrangement of transgene sequences was observed, but it had no effect on gene expression. All the stable lines were found to segregate for transgene activity in a Mendelian fashion.  相似文献   

18.
The growth kinetics and variations in cell wall matrix polysaccharides and glycoside hydrolases during seedling development of the drought-tolerant wheat cultivar (cv. Hong Mang Mai) were compared with the drought-sensitive cultivar (cv. Shirasagikomugi). After 15d of culture in water at 22 degrees C under constant irradiance of 98mumolm(-2)s(-1), the length of the coleoptile and leaf sheath of Hong Mang Mai seedlings was 1.7 times longer than those of Shirasagikomugi seedlings. In the cell walls isolated from coleoptiles and leaf sheaths of the seedling of the two cultivars, the contents of arabinose, xylose, and glucose changed during development. The cell walls were fractionated progressively with 50mM CDTA, 50mM Na(2)CO(3), 1M KOH and 4M KOH, and sugar composition was determined. The amount of CDTA-soluble fraction from the Hong Mang Mai cell walls was 2.4-fold higher than that from the Shirasagikomugi cell walls at 6d of culture, and a considerable decrease was observed during development. The ratio of arabinose to xylose in 1M KOH-soluble fraction from the two cultivars decreased. The amount of 4M KOH-soluble fraction from the Shirasagikomugi cell walls was affected much more than those of the Hong Mang Mai cell walls. Many glycoside hydrolase activities were detected in the protein fractions from coleoptiles and leaf sheaths of the two cultivars, and the activities of licheninase, 1,3-1,4-beta-glucanase, and 1,3-beta-glucanase in the LiCl-soluble protein fraction increased drastically during development of the Shirasagikomugi seedlings. These findings suggest that the metabolism of the cell wall matrix polysaccharides of the drought-tolerant wheat cultivar is far different from that of the drought-sensitive wheat cultivar during seedling development.  相似文献   

19.
20.
Summary Crown position affects winter survival of fallsown wheat (Triticum aestivum L.) Direct or indirect selection for crown depth has been little practiced. Reports have suggested that short subcrown internode length was closely related to semidwarf plant height and that semidwarfism was related to poor emergence. This study determined the relationships among crown depth, plant height, and emergence rate index in three wheat populations. The efficiency of evaluating crown placement in the field was examined and additional information was obtained on its genetic control. The F2-derived F4 and F5 lines from the crosses of female parents Daws, Nugaines, and Stephens with male parent Selection 7952 were planted at Central Ferry and Pullman, Washington, respectively. Correlations from each population indicated that crown depth and subcrown internode length were not closely associated with plant height and emergence rate index. Crown depth was a more reliable indicator of crown placement than subcrown internode length. Adjustment of the data for seed depth differences was essential for evaluating subcrown internode length but less important for evaluating crown depth. After adjustment for seed depth, narrow-sense h 2 values for subcrown internode length and crown depth were 0.25–0.41. Crown depth and subcrown internode length were inherited as quantitative traits in phenotypes that expressed variable dominance. Modest gains due to selection for crown depth were achieved.Contribution from USDA-ARS and College of Agriculture and Home Economics Research Center, Washington State University, Scientific Paper No. 7795  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号