首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A gene encoding a putative asparagine synthetase (AS; EC 6.3.5.4) has been isolated from common bean (Phaseolus vulgaris). A 2.4 kb cDNA clone of this gene (PVAS3) encodes a protein of 570 amino acids with a predicted molecular mass of 64,678 Da, an isoelectric point of 6.45, and a net charge of −5.9 at pH 7.0. The PVAS3 protein sequence conserves all the amino acid residues that are essential for glutamine-dependent AS, and PVAS3 complemented an E. coli asparagine auxotroph, that demonstrates that it encodes a glutamine-dependent AS. PVAS3 displayed significant similarity to other AS. It showed the highest similarity to soybean SAS3 (92.9% identity), rice AS (73.7% identity), Arabidopsis ASN2 (73.2%) and sunflower HAS2 (72.9%). A phylogenetic analysis revealed that PVAS3 belongs to class-II asparagine synthetases. Expression analysis by real-time RT-PCR revealed that PVAS3 is expressed ubiquitously and is not repressed by light.  相似文献   

2.
A gene encoding a putative asparagine synthetase (AS; EC 6.3.5.4) has been isolated from common bean (Phaseolus vulgaris L.). A 2-kb cDNA clone of this gene (PVAS1) encodes a protein of 579 amino acids with a predicted molecular mass of 65,265 Da, an isoelectric point of 6.3, and a net charge of -9.3 at pH 7.0. The PVAS1 protein sequence conserves all the amino acid residues that are essential for glutamine-dependent AS, and PVAS1 complemented an Escherichia coli asparagine auxotroph, which demonstrates that it encodes a glutamine-dependent AS. The PVAS1 protein showed the highest similarity to soybean SAS1, and piled up with other legume ASs to form an independent dendritic group of type-I AS enzymes. Northern blot analyses revealed that the expression pattern of PVAS1 resembles that of PVAS2, another AS previously described in the common bean. Unlike PVAS2, however, PVAS1 was not expressed in the nodule and was not repressed by light, suggesting different functions for these two AS genes.  相似文献   

3.
A cDNA clone, designated as PvNAS2, encoding asparagine amidotransferase(asparagine synthetase) was isolated from nodule tissue of commonbean (Phaseolus vulgaris cv. Negro Jamapa). Southern blot analysisindicated that asparagine synthetase in bean is encoded by asmall gene family. Northern analysis of RNAs from various plantorgans demonstrated that PvNAS2 is highly expressed in roots,followed by nodules in which it is mainly induced during theearly days of nitrogen fixation. Investigations with the PvNAS2promoter gusA fusion revealed that the expression of PvNAS2in roots is confined to vascular bundles and meristematic tissues,while in root nodules its expression is solely localized tovascular traces and outer cortical cells encompassing the centralnitrogen-fixing zone, but never detected in either infectedor non-infected cells located in the central region of the nodule.PvNAS2 is down-regulated when carbon availability is reducedin nodules, and the addition of sugars to the plants, mainlyglucose, boosted its induction, leading to the increased asparagineproduction. In contrast to PvNAS2 expression and the concomitantasparagine synthesis, glucose supplement resulted in the reductionof ureide content in nodules. Studies with glucose analoguesas well as hexokinase inhibitors suggested a role for hexokinasein the sugar-sensing mechanism that regulates PvNAS2 expressionin roots. In light of the above results, it is proposed that,in bean, low carbon availability in nodules prompts the down-regulationof the asparagine synthetase enzyme and concomitantly asparagineproduction. Thereby a favourable environment is created forthe efficient transfer of the amido group of glutamine for thesynthesis of purines, and then ureide generation. Key words: Asparagine and ureide synthesis, asparagine synthetase, nodules, Phaseolus vulgaris, sugar signalling  相似文献   

4.
5.
6.
7.

Background

Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP.

Results

BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated.

Conclusions

Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-880) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
The expression of the Crlz-1 gene in mouse testis, where it was found to be expressed most highly among the tested mouse organs, was analyzed spatiotemporally by employing RT-PCR and in situ hybridization techniques with the aid of immunohistochemistry and/or immunofluorescence methods. In 1-week-old neonatal testis, Crlz-1 was strongly expressed in the spermatogonia and Sertoli cells in its seminiferous cord. In 2- to 3-week-old prepubertal testis, where Sertoli cells cease to proliferate, Crlz-1 expression dropped and remained weakly at the rim layer of seminiferous cords and/or tubules, where spermatogonia are present. In the adult testis at 12 weeks after birth, Crlz-1 was expressed mainly in the spermatids near the lumen of seminiferous tubules. In a further in situ hybridization of Crlz-1 in the 12-week-old adult testis with hematoxylin nuclear counterstaining, Crlz-1 was mainly expressed at step 16 of spermatids between stages VII and VIII of seminiferous tubules as well as in their residual bodies at stage IX of seminiferous tubules.  相似文献   

11.
Hu J  Zhang J  Shan H  Chen Z 《Annals of botany》2012,110(1):57-69

Background and Aims

The perianths of the Lardizabalaceae are diverse. The second-whorl floral organs of Sinofranchetia chinensis (Lardizabalaceae) are nectar leaves. The aim of this study was to explore the nature of this type of floral organ, and to determine its relationship to nectar leaves in other Ranunculales species, and to other floral organs in Sinofranchetia chinensis.

Methods

Approaches of evolutionary developmental biology were used, including 3′ RACE (rapid amplification of cDNA ends) for isolating floral MADS-box genes, phylogenetic analysis for reconstructing gene evolutionary history, in situ hybridization and tissue-specific RT-PCR for identifying gene expression patterns and SEM (scanning electron microscopy) for observing the epidermal cell morphology of floral organs.

Key Results

Fourteen new floral MADS-box genes were isolated from Sinofranchetia chinensis and from two other species of Lardizabalaceae, Holboellia grandiflora and Decaisnea insignis. The phylogenetic analysis of AP3-like genes in Ranunculales showed that three AP3 paralogues from Sinofranchetia chinensis belong to the AP3-I, -II and -III lineages. In situ hybridization results showed that SIchAP3-3 is significantly expressed only in nectar leaves at the late stages of floral development, and SIchAG, a C-class MADS-box gene, is expressed not only in stamens and carpels, but also in nectar leaves. SEM observation revealed that the adaxial surface of nectar leaves is covered with conical epidermal cells, a hallmark of petaloidy.

Conclusions

The gene expression data imply that the nectar leaves in S. chinensis might share a similar genetic regulatory code with other nectar leaves in Ranunculales species. Based on gene expression and morphological evidence, it is considered that the nectar leaves in S. chinensis could be referred to as petals. Furthermore, the study supports the hypothesis that the nectar leaves in some Ranunculales species might be derived from stamens.  相似文献   

12.
13.

Background

LIM (Lin-11, Isl-1 and Mec-3 domains) genes have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly, in higher plants; however, the stress resistance related functions of these genes are still not well known. In this study, we collected 22 LIM genes designated as Brassica rapa LIM (BrLIM) from the Brassica database, analyzed the sequences, compared them with LIM genes of other plants and analyzed their expression after applying biotic and abiotic stresses in Chinese cabbage.

Results

Upon sequence analysis these genes were confirmed as LIM genes and found to have a high degree of homology with LIM genes of other species. These genes showed distinct clusters when compared to other recognized LIM proteins upon phylogenetic analysis. Additionally, organ specific expression of these genes was observed in Chinese cabbage plants, with BrPLIM2a, b, c, BrDAR1, BrPLIM2e, f and g only being expressed in flower buds. Furthermore, the expression of these genes (except for BrDAR1 and BrPLIM2e) was high in the early flowering stages. The remaining genes were expressed in almost all organs tested. All BrDAR genes showed higher expression in flower buds compared to other organs. These organ specific expressions were clearly correlated with the phylogenetic grouping. In addition, BrWLIM2c and BrDAR4 responded to Fusarium oxysporum f. sp. conglutinans infection, while commonly two BrDARs and eight BrLIMs responded to cold, ABA and pH (pH5, pH7 and pH9) stress treatments in Chinese cabbage plants.

Conclusion

Taken together, the results of this study indicate that BrLIM and BrDAR genes may be involved in resistance against biotic and abiotic stresses in Brassica.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-641) contains supplementary material, which is available to authorized users.  相似文献   

14.
The real-time polymerase chain reaction (PCR) data requires normalization with an internal control gene expressed at constant levels under all the experimental conditions being analyzed for accurate and reliable gene expression results. In this study, the expression of 12 candidate internal control genes, including ACT1, EF1α, GAPDH, IF4a, TUB6, UBC, UBQ5, UBQ10, 18SrRNA, 25SrRNA, GRX and HSP90, in a diverse set of 18 tissue samples representing different organs/developmental stages and stress conditions in chickpea (Cicer arietinum L.) has been validated. Their expression levels vary considerably in various tissue samples analyzed. The expression levels of EF1α and HSP90 are most constant across various organs/developmental stages analyzed. Similarly, the expression levels of IF4a and GAPDH are most constant across various stress conditions. A set of two most stable genes is found sufficient for accurate and reliable normalization of real-time PCR data in the given set of tissue samples of chickpea. The genes with most constant expression identified in this study should be useful for normalization of gene expression data in a wide variety of tissue samples in chickpea.  相似文献   

15.
Glutathione S-transferases (GSTs) play a pivotal role in detoxifying endogenous and xenobiotic compounds and oxidative stress resistance in cells. In this study, five GST genes, including three Sigma GSTs (SlGSTs1, SlGSTs2, and SlGSTs3), one Omega GST (SlGSTo1) and one un-classified GST (SlGSTu1) were identified from the midgut of the Common cutworm, Spodoptera litura. Structure analyses of the eight (including the previously identified Epsilon GST genes, SlGSTe1, SlGSTe2 and SlGSTe3 from the same insect) SlGSTs genes showed that the Epsilon SlGSTe genes do not contain any intron, while the Sigma SlGSTs contain three introns and the Omega SlGSTo1 and the un-classified SlGSTu1 contain five introns. Analysis of the spatial and temporal expression of these eight SlGSTs indicated that SlGSTe1, SlGSTs2 and SlGSTo1 expressed in all stages of development from the egg to the adult stages. SlGSTe2, SlGSTe3, SlGSTs1, SlGSTs3 and SlGSTu1 had higher expression levels in the larval stages than in other stages and their expression levels in the midgut were higher than in other tissues. SlGSTs1 was expressed in the larval midgut but not in the fat body and could be induced by bacterial infections. The expression of SlGSTe1, SlGSTe3, SlGSTs1 and SlGSTs3 was increased by chlorpyrifos to various degrees, while the expression of SlGSTe1, SlGSTe3, SlGSTs1, SlGSTs3 and SlGSTo1 was increased by xanthotoxin. Levels of malonaldehyde, an indicator of oxidative stress, were higher in the larval midgut than in the pupal midgut. Chlorpyrifos induced the malonaldehyde content in the larvae, whereas xanthotoxin did not. It is hypothesized that high expression levels of the midgut SlGSTs might be due to the increased levels of oxidative stress caused by feeding, bacterial infection and xenobiotic compounds.  相似文献   

16.
Asparagine synthetase (glutamine-hydrolyzing [l-aspartate: l-glutamine amido-ligase (AMP-forming), E.C. 6.3.5.4] was purified over 500-fold from cotyledon extracts of 1-week-old yellow lupin seedlings. The enzyme was labile and required protection by high levels of thiols; glycerol and the substrates also stabilized it. The reaction products were shown to be asparagine, AMP, PPi and glutamate. The limiting Km values were for aspartate 1·3 mM, for MgATP 0·14 mM and for glutamine 0·16 mM. Positive homotropic cooperativity was observed for MgATP only, and gel filtration studies indicated that the substrate-free enzyme (MW 160 000) associated to a dimer (MW 320 000 in the presence of MgCl2 and ATP. The purified enzyme, which had some glutaminase activity, catalyzed an aspartate- and glutamine-independent ATP-PPi exchange reaction at a rate 5–7-fold higher than the rate of asparagine synthesis. Initial velocity studies and exchange data indicated an overall ping-pong mechanism. Compared to similar enzymes isolated from mammalian tumor cells, the lupin enzyme appears to be unique with respect to MW, reaction mechanism and regulatory properties. The allosteric properties observed suggest an important role for this enzyme in the regulation of asparagine biosynthesis.  相似文献   

17.
18.
19.

Background and Aims

The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined.

Methods

Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR.

Key Results

Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences.

Conclusions

Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well understood and require further study in Balanophora and other holoparasites.  相似文献   

20.
The activities of glutamate dehydrogenase, asparagine synthetase, and total glutamine synthetase in the organs of the white lupine (Lupinus albus L.) plants were measured during plant growth and development. In addition, the dynamics of free amino acids and amides in plant organs was followed. It was shown that the change in the nutrition type was important for controlling enzyme activities in the organs examined and, consequently, for directing the pathway of ammonium nitrogen assimilation. As long as the plants remained heterotrophic, glutamine-dependent asparagine synthetase of cotyledons and glutamine synthetase of leaves apparently played a major role in the assimilation of ammonium nitrogen. In symbiotrophic plants, root nodules became an exclusive site of asparagine synthesis, and the role of leaf glutamine synthetase increased. Unlike glutamine synthetase and asparagine synthetase, glutamate dehydrogenase activity was present in all organs examined and was less dependent on the nutrition type. This was also indicated by a weak correlation of glutamate dehydrogenase activity with the dynamics of free amino acid and amide content in these organs. It is supposed that glutamine synthetase plays a leading role in both the primary assimilation of ammonium, produced during symbiotic fixation of molecular nitrogen in root nodules, and in its secondary assimilation in cotyledons and leaves. On the other hand, secondary nitrogen assimilation in the axial organs occurs via an alternative glutamate dehydrogenase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号