首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA, the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression pattern of uhrf1 and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf1(-/-) embryonic stem cells did not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2 domains may contribute to a tighter epigenetic control of gene expression in differentiated cells.  相似文献   

4.
5.
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) disease is a chronic neuroinflammatory disease, which is associated with HTLV-1 infection. There is no effective and satisfactory treatment of HAM/TSP. It has been shown that curcumin exhibits modulatory effects on apoptosis and cytotoxicity-related molecules in HAM/TSP patients. In the present study, we examined the effect of curcumin on the gene expression of caspase-8, caspase-10, and anti-apoptotic protein c-FLIP, in HAM/TSP patients. Furthermore, we compared the expression of these molecules between HAM/TSP and asymptomatic carriers. Real-time PCR was performed to examine the mRNA expression of caspase-8, caspase-10, and c-FLIP in studied groups. The mRNA expression of caspase-8 and caspase-10 was similar before and after curcumin treatment in HAM/TSP patients (P > 0.05). The mRNA expression of c-FLIPL and c-FLIPs was higher after curcumin treatment compared with before treatment and significant differences were observed between the two groups (P = 0.004 and P = 0.044, respectively). The mRNA expression levels of caspase-8, caspase-10, c-FLIPL, and c-FLIPs were not statistically significant between HAM/TSP patients and asymptomatic carriers (P < 0.05). In conclusion, our results showed that curcumin increased the expression of c-FLIP in HAM/TSP patients which might suggest that, this molecule is involved in the apoptosis of HTLV-1-infected cells. Further studies with large sample size could be useful to clarify the role of this supplement in HAM/TSP patients.  相似文献   

6.
DNA and histone chromatin modifying enzymes play a crucial role in chromatin remodeling in several biological processes. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a relevant player in the regulation of a broad spectrum of biological processes including development, cellular differentiation, embryonic pluripotency and cancer. Here, we review recent insights on the role of LSD1 activity in chromatin regulatory complexes, its functional role in the epigenetic changes during embryonic development, in the establishment and maintenance of stemness and during cancer progression.  相似文献   

7.
8.
Pan Z  Zhang J  Li Q  Li Y  Shi F  Xie Z  Liu H 《遗传学报》2012,39(3):111-123
During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell-specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).  相似文献   

9.
10.
11.
12.
13.
The expression of the chondromodulin-I (ChM-I) gene, a cartilage-specific gene, is regulated by the binding of Sp3 to the core promoter region, which is inhibited by the methylation of CpG in the target genome in the osteogenic lineage, osteosarcoma (OS) cells. The histone tails associated with the hypermethylated promoter region of the ChM-I gene were deacetylated by histone deacetylase 2 (HDAC2) in three ChM-I-negative OS cell lines. Treatment with an HDAC inhibitor induced the binding of Sp3 in one cell line, which became ChM-I-positive. This process was associated with acetylation instead of the dimethylation of histone H3 at lysine 9 (H3-K9) and, surprisingly, the demethylation of the core promoter region. The demethylation was transient, and gradually replaced by methylation after a rapid recovery of histone deacetylaion. These results represent an example of the plasticity of differentiation being regulated by the cell-specific plasticity of epigenetic regulation.  相似文献   

14.
The function of DLEU1 in human cancer is largely unknown. The Cancer Genome Atlas data were applied to identify the landscape of differential genes between tumor tissues and normal tissues, which was further validated by our cohort data and pan-cancer data including 33 cancer types with 11,060 patients. Next, DLEU1 was selected to validate the novel finding and result showed that it promoted tumorigenesis in vitro and in vivo. Mechanistically, DLEU1 promotes SRP4 expression via increasing H3K27ac enrichment to SRP4 locus epigenetically. Moreover, epigenetic modification leads to upregulation of DLEU1 expression via decreased DNA methylation and increased H3K27ac and H3K4me3 histone modification in its locus. Finally, high expression of DLEU1 correlates with worse prognosis not only in specific cancer type patients but also in patients in the pan-cancer cohort. In summary, the work broadens the function landscape of known long noncoding RNAs in human cancer and provides novel insights into their roles in tumorigenesis.  相似文献   

15.
16.
Maintenance of adult stem cells is largely dependent on the balance between their self-renewal and differentiation. The Drosophila ovarian germline stem cells (GSCs) provide a powerful in vivo system for studying stem cell fate regulation. It has been shown that maintaining the GSC population involves both genetic and epigenetic mechanisms. Although the role of epigenetic regulation in this process is evident, the underlying mechanisms remain to be further explored. In this study, we find that Enoki mushroom (Enok), a Drosophila putative MYST family histone acetyltransferase controls GSC maintenance in the ovary at multiple levels. Removal or knockdown of Enok in the germline causes a GSC maintenance defect. Further studies show that the cell-autonomous role of Enok in maintaining GSCs is not dependent on the BMP/Bam pathway. Interestingly, molecular studies reveal an ectopic expression of Bruno, an RNA binding protein, in the GSCs and their differentiating daughter cells elicited by the germline Enok deficiency. Misexpression of Bruno in GSCs and their immediate descendants results in a GSC loss that can be exacerbated by incorporating one copy of enok mutant allele. These data suggest a role for Bruno in Enok-controlled GSC maintenance. In addition, we observe that Enok is required for maintaining GSCs non-autonomously. Compromised expression of enok in the niche cells impairs the niche maintenance and BMP signal output, thereby causing defective GSC maintenance. This is the first demonstration that the niche size control requires an epigenetic mechanism. Taken together, studies in this paper provide new insights into the GSC fate regulation.  相似文献   

17.
18.
To understand epigenetic regulation of neurotrophins in Neuro-2a mouse neuroblastoma cells, we investigated the alteration of CpG methylation of brain-derived neurotrophic factor (BDNF) promoter I and neurotrophin-3 (NT-3) promoter IB and that of histone modification in Neuro-2a cells. Bisulfite genomic sequencing showed that the CpG sites of BDNF promoter I were methylated in non-treated Neuro-2a cells and demethylated following 5-aza-2′-deoxycytidine (5-aza-dC) treatment. In contrast, methylation status of the NT-3 promoter IB did not change by 5-aza-dC treatment in Neuro-2a cells. Furthermore, we demonstrated that BDNF exon I-IX mRNA was induced by trichostatin A (TSA) treatment. However, NT-3 exon IB-II mRNA was not induced by TSA treatment. Chromatin immunoprecipitation assays showed that the levels of acetylated histones H3 and H4 on BDNF promoter I were increased by TSA. These results demonstrate that DNA methylation and/or histone modification regulate BDNF gene expression, but do not regulate NT-3 gene expression in Neuro-2a cells.  相似文献   

19.
Hitomi Katsura 《FEBS letters》2009,583(3):526-3395
Oligomeric structures of the four LOV domains in Arabidopsis phototropin1 (phot1) and 2 (phot2) were studied using crosslinking. Both LOV1 domains of phot1 and phot2 form a dimer independently on the light conditions, suggesting that the LOV1 domain can be a stable dimerization site of phot in vivo. In contrast, phot1-LOV2 is in a monomer-dimer equilibrium and phot2-LOV2 exists as a monomer in the dark. Blue light-induced a slight increase in the monomer population in phot1-LOV2, suggesting a possible blue light-inducible dissociation of dimers. Furthermore, blue light caused a band shift of the phot2-LOV2 monomer. CD spectra revealed the unfolding of helices and the formation of strand structures. Both light-induced changes were reversible in the dark.

Structured summary

MINT-6823377, MINT-6823391:PHOT1 (uniprotkb:O48963) and PHOT1 (uniprotkb: O48963) bind (MI:0407) by cross-linking studies (MI:0030)MINT-6823495, MINT-6823508:PHOT2 (uniprotkb:P93025) and PHOT2 (uniprotkb:P93025) bind (MI:0407) by cross-linking studies (MI:0030)  相似文献   

20.
H1 and core histone mRNA levels have been examined in the presence of protein synthesis inhibitors with different mechanisms of action. Total HeLa cell RNAs were analyzed by Northern Blot hybridization using cloned human histone genes as probes. Inhibition of DNA replication resulted in a rapid decline in histone mRNA levels. However, in the presence of cycloheximide or puromycin, H1 and core mRNAs did not decrease in parallel with DNA synthesis, but were stabilized and accumulated. Inhibition of DNA synthesis with hydroxyurea after the inhibition of protein synthesis did not lead to a decline in histone mRNA levels. These results suggest that synthesis of a protein(s)--perhaps a histone protein(s)--is required for the coordination of DNA synthesis and histone mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号