首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

3.
In solanaceous plants such as tomato and tobacco, the sucrose transporter SUT1 is crucial for phloem loading. Using GUS as a reporter, the promoter and other regulatory cis elements required for the tomato LeSUT1 expression were analyzed by heterologous expression of translational chimeric constructs in tobacco. Although LeSUT1 is highly expressed at the RNA level, GUS expression under the control of a 1.8 kb LeSUT1 promoter resulted in few plants expressing GUS. In GUS-positive transformants, expression levels were low and limited to leaf phloem. Increasing or decreasing the length of LeSUT1 promoter did not lead to a significant increase in positive transformants or higher expression levels. Translational fusion of GUS to the LeSUT1 C-terminus in a construct containing all exons and introns and the 3'-UTR led to a higher number of positive transformants and many plants with high GUS activity. LeSUT1 expression was detected in ab- and adaxial phloem companion cells, trichomes and guard cells. The role of individual introns in LeSUT1 expression was further analyzed by placing each LeSUT1 intron into the 5'-UTR within the 2.3 kb LeSUT1 promoter construct. Results showed remarkable functions for the three introns for SUT1 expression in trichomes, guard cells and phloem cells. Intron 3 is responsible for expression in trichomes, whereas intron 2 is necessary for expression in companion cells and guard cells. The combination of all introns is required for the full expression pattern in phloem, guard cells and trichomes.  相似文献   

4.
5.
Using expression analysis, the role of the sucrose transporter OsSUT1 during germination and early growth of rice seedlings has been examined in detail, over a time-course ranging from 1 d to 7 d post-imbibition. Unlike the wheat orthologue, TaSUT1, which is thought to be directly involved in sugar transfer across the scutellar epithelium, OsSUT1 is not expressed in the scutellar epithelial cell layer of germinating rice and is, therefore, not involved in transport of sugars across the symplastic discontinuity between the endosperm and the embryo. OsSUT1 expression was also absent from the aleurone cells, indicating it is not involved in the transport of sucrose in this cell layer during germination. However, by 3 d post-imbibition, OsSUT1 was present in the companion cells and sieve elements of the scutellar vascular bundle, where it may play a role in phloem loading of sucrose for transport to the developing shoot and roots. This sucrose is most likely sourced from hexoses imported from the endosperm. In addition, sucrose may be remobilized from starch granules which are present at a high density in the scutellar ground tissues surrounding the vasculature and at the base of the shoot. OsSUT1 was also present in the coleoptile and the first and second leaf blades, where it was localized to the phloem along the entire length of these tissues, and was also present within the phloem of the primary roots. OsSUT1 may be involved in retrieval of sugars from the apoplasm in these tissues.  相似文献   

6.
7.
Lin SK  Chang MC  Tsai YG  Lur HS 《Proteomics》2005,5(8):2140-2156
Proteins are essential to rice caryopsis development and quality formation. High temperature is an important environmental factor, which may decrease grain quality. In the present study rice caryopsis proteins were profiled by two-dimensional polyacrylamide gel electrophoresis, and differentially expressed proteins were analyzed by liquid chromatography/tandem mass spectrometry. Expressions of more than 400 polypeptide spots during caryopsis development, in response to temperature treatments or between varieties were monitored. Among them, more than 70 differentially expressed polypeptides were analyzed by liquid chromatography/tandem mass spectrometry. We identified 54 proteins with known functions. Of these, 21 were involved with carbohydrate metabolism, 14 with protein synthesis and sorting, and 9 with stress responses. Waxy (Wx) proteins and glutelins were the most significant spots, which increased significantly during development. Allergen-like proteins, PPDK and NADH-SDH, also were expressed during development, implying their physiological roles in caryopsis. Expression of large isoforms of Wx proteins was correlated with the amylose content of rice caryopses. One protein with high GC content in its DNA sequence was correlated with the chalky trait of kernels. High temperature (35/30 degrees C) decreased the expression of Wx proteins, allergen-like proteins, and elongation factor 1beta, but increased the expression of small heat shock proteins (sHSP), glyceraldehyde-3-phosphate dehydrogenase, and prolamin. sHSP was positively correlated with the appearance of chalky kernels. During development, glutelins were phosphorylated and glycosylated, indicating that these molecules were post-translationally modified. Possible functions of the expression of candidate proteins on the grain quality are discussed.  相似文献   

8.
曹云英  段骅  王志琴  刘立军  杨建昌 《生态学报》2010,30(22):6009-6018
为明确高温对耐热性不同水稻品种叶片蛋白质表达的影响,以耐热性不同的2个籼稻品种双桂1号(不耐热)和黄华占(耐热)为材料,分别于苗期、减数分裂期及抽穗(始穗后0—10d)和灌浆早期(始穗后11—20d)进行高温处理,之后取材并采用双向凝胶电泳技术研究高温对不同水稻品种叶片蛋白质表达的影响。结果表明,高温胁迫导致叶片中蛋白质的变化呈4种状况:新蛋白质的产生,一些蛋白质表达量上调,一些蛋白质的表达被抑制,一些蛋白质表达量下调。蛋白质表达变化在两品种以及4个处理时期的表现不同,总体表现为在热敏感品种中表达谱发生变化的蛋白质总数高于耐热品种。质谱分析表明,差异蛋白质主要涉及光合作用和信号转导,该类蛋白质在热敏感品种中表现为不表达或表达量下降,而在耐热品种则表现为有新诱导的蛋白质的产生或表达量上调,表明参与光合作用和信号转导的蛋白质在水稻耐热机制中发挥了重要作用。  相似文献   

9.
Physiological functions of sucrose (Suc) transporters (SUTs) localized to the tonoplast in higher plants are poorly understood. We here report the isolation and characterization of a mutation in the rice (Oryza sativa) OsSUT2 gene. Expression of OsSUT2-green fluorescent protein in rice revealed that OsSUT2 localizes to the tonoplast. Analysis of the OsSUT2 promoter::β-glucuronidase transgenic rice indicated that this gene is highly expressed in leaf mesophyll cells, emerging lateral roots, pedicels of fertilized spikelets, and cross cell layers of seed coats. Results of Suc transport assays in yeast were consistent with a H(+)-Suc symport mechanism, suggesting that OsSUT2 functions in Suc uptake from the vacuole. The ossut2 mutant exhibited a growth retardation phenotype with a significant reduction in tiller number, plant height, 1,000-grain weight, and root dry weight compared with the controls, the wild type, and complemented transgenic lines. Analysis of primary carbon metabolites revealed that ossut2 accumulated more Suc, glucose, and fructose in the leaves than the controls. Further sugar export analysis of detached leaves indicated that ossut2 had a significantly decreased sugar export ability compared with the controls. These results suggest that OsSUT2 is involved in Suc transport across the tonoplast from the vacuole lumen to the cytosol in rice, playing an essential role in sugar export from the source leaves to sink organs.  相似文献   

10.
Developmental changes in the starch and sucrose content of grains andthe activities of enzymes of starch synthesis in wheat were studied under waterstress conditions. Water stress caused a marked reduction in the sucrose andstarch content of the grains. Sucrose synthase (SS) and UDP-glucosepyrophosphorylase (UDP-Gppase), showed higher catalytic activity and moreresistance to water stress compared with amyloplastic enzymes. ADP-glucosepyrophosphorylase (ADP-Gppase) activity was reduced to a low level under bothin situ and osmotic stress conditions in which grainsfailed to accumulate dry matter in vivo. Granule-boundstarch synthase (GBSS) also responded rapidly to in situwater stress treatments as did ADP-Gppase. Reduction in GBSS activity at thetime of growth cessation in situ was less than that ofADP-Gppase and the enzyme did not respond to severe osmotic stress. Solublestarch synthase (SSS) was the enzyme most sensitive to water stress in that itresponded earlier, and to a greater extent, than the other enzymes. However,under severe dehydration conditions, leading to cessation of growth, thedeclinein SSS activity was less than that for ADP-Gppase. SSS showed the lowestin vitro activity followed by GBSS. These results suggestthat SSS is the site of response to water stress by which the rate of graingrowth can be affected, whereas growth cessation is due mainly to theinactivation of ADP-Gppase.  相似文献   

11.
Seo HM  Jung Y  Song S  Kim Y  Kwon T  Kim DH  Jeung SJ  Yi YB  Yi G  Nam MH  Nam J 《Biotechnology letters》2008,30(10):1833-1838
Most high-affinity phosphate transporter genes (OsPTs) in rice were highly induced in roots when phosphate was depleted. OsPT1, however, was highly expressed in primary roots and leaves regardless of external phosphate concentrations. This finding was confirmed histochemically using transgenic rice plants that express the GUS reporter gene under the control of the OsPT1 promoter, which exhibited high GUS activity even in the phosphate sufficient condition. Furthermore, transgenic rice plants overexpressing the OsPT1 gene accumulated almost twice as much phosphate in the shoots as did wild-type plants. As a result, transgenic plants had more tillers than did wild-type plants, which is a typical physiological indicator for phosphate status in rice.  相似文献   

12.
We have investigated OsHKT2;1 natural variation in a collection of 49 cultivars with different levels of salt tolerance and geographical origins. The effect of identified polymorphism on OsHKT2;1 activity was analysed through heterologous expression of variants in Xenopus oocytes. OsHKT2;1 appeared to be a highly conserved protein with only five possible amino acid substitutions that have no substantial effect on functional properties. Our study, however, also identified a new HKT isoform, No-OsHKT2;2/1 in Nona Bokra, a highly salt-tolerant cultivar. No-OsHKT2;2/1 probably originated from a deletion in chromosome 6, producing a chimeric gene. Its 5' region corresponds to that of OsHKT2;2, whose full-length sequence is not present in Nipponbare but has been identified in Pokkali, a salt-tolerant rice cultivar. Its 3' region corresponds to that of OsHKT2;1. No-OsHKT2;2/1 is essentially expressed in roots and displays a significant level of expression at high Na(+) concentrations, in contrast to OsHKT2;1. Expressed in Xenopus oocytes or in Saccharomyces cerevisiae, No-OsHKT2;2/1 exhibited a strong permeability to Na(+) and K(+) , even at high external Na(+) concentrations, like OsHKT2;2, and in contrast to OsHKT2;1. Our results suggest that No-OsHKT2;2/1 can contribute to Nona Bokra salt tolerance by enabling root K(+) uptake under saline conditions.  相似文献   

13.
To study the export of sugars from leaves and their long-distance transport, sucrose-proton/co-transporter activity of potato was inhibited by antisense repression of StSUT1 under control of either a ubiquitously active (CaMV 35S ) or a companion-cell-specific (rolC) promotor in transgenic plants. Transformants exhibiting reduced levels of the sucrose-transporter mRNA and showing a dramatic reduction in root and tuber growth, were chosen to investigate the ultrastructure of their source leaves. The transformants had a regular leaf anatomy with a single-layered palisade parenchyma, and bicollateral minor veins within the spongy parenchyma. Regardless of the promoter used, source leaves from transformants showed an altered leaf phenotype and a permanent accumulation of assimilates as indicated by the number and size of starch grains, and by the occurrence of lipid-storing oleosomes. Starch accumulated throughout the leaf: in epidermis, mesophyll and, to a smaller degree, in phloem parenchyma cells of minor veins. Oleosomes were observed equally in mesophyll and phloem parenchyma cells. Companion cells were not involved in lipid accmulation and their chloroplasts developed only small starch grains. The similarity of ultrastructural symptoms under both promotors corresponds to, rather than contradicts, the hypothesis that assimilates can move symplasmically from mesophyll, via the bundle sheath, up to the phloem. The microscopical symptoms of a constitutively high sugar level in the transformant leaves were compared with those in wild-type plants after cold-girdling of the petiole. Inhibition of sugar export, both by a reduction of sucrose carriers in the sieve element/companion cell complex (se/cc complex), or further downstream by cold-girdling, equally evokes the accumulation of assimilates in all leaf tissues up to the se/cc complex border. However, microscopy revealed that antisense inhibition of loading produces a persistently high sugar level throughout the leaf, while cold-girdling leads only to local patches containing high levels of sugar. Received: 4 March 1998 / Accepted: 7 April 1998  相似文献   

14.
In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype ‘TAS-R8’. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production.  相似文献   

15.
The intracellular potassium (K+) homeostasis, which is crucial for plant survival in saline environments, is modulated by K+ channels and transporters. Some members of the high‐affinity K+ transporter (HAK) family are believed to function in the regulation of plant salt tolerance, but the physiological mechanisms remain unclear. Here, we report a significant inducement of OsHAK21 expression by high‐salinity treatment and provide genetic evidence of the involvement of OsHAK21 in rice salt tolerance. Disruption of OsHAK21 rendered plants sensitive to salt stress. Compared with the wild type, oshak21 accumulated less K+ and considerably more Na+ in both shoots and roots, and had a significantly lower K+ net uptake rate but higher Na+ uptake rate. Our analyses of subcellular localizations and expression patterns showed that OsHAK21 was localized in the plasma membrane and expressed in xylem parenchyma and individual endodermal cells (putative passage cells). Further functional characterizations of OsHAK21 in K+ uptake‐deficient yeast and Arabidopsis revealed that OsHAK21 possesses K+ transporter activity. These results demonstrate that OsHAK21 may mediate K+ absorption by the plasma membrane and play crucial roles in the maintenance of the Na+/K+ homeostasis in rice under salt stress.  相似文献   

16.
The heavy metal cadmium (Cd) is toxic to humans, and its accumulation in rice grains is a major agricultural problem. Rice has seven putative metal transporter NRAMP genes, but microarray analysis showed that only OsNRAMP1 is highly up-regulated by iron (Fe) deficiency. OsNRAMP1 localized to the plasma membrane and transported Cd as well as Fe. OsNRAMP1 expression was observed mainly in roots and was higher in the roots of a high-Cd-accumulating cultivar (Habataki) than in those of a low-Cd-accumulating cultivar (Sasanishiki). The amino acid sequence of OsNRAMP1 in the Sasanishiki and Habataki cultivars was found to be 100% identical. These results suggest that OsNRAMP1 participates in cellular Cd uptake and that the differences observed in Cd accumulation among cultivars are because of differences in OsNRAMP1 expression levels in roots.  相似文献   

17.
Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control of the maize ubiquitin1 promoter and comparing the mobilization and loading of different metals. Plants expressing HvYS1 showed modest increases in Fe uptake, root‐to‐shoot translocation, seed accumulation and endosperm loading, but without any change in the uptake and root‐to‐shoot translocation of Zn, Mn or Cu, confirming the selective transport of Fe. The concentrations of Zn and Mn in the endosperm did not differ significantly between the wild‐type and HvYS1 lines, but the transgenic endosperm contained significantly lower concentrations of Cu. Furthermore, the transgenic lines showed a significantly reduced Cd uptake, root‐to‐shoot translocation and accumulation in the seeds. The underlying mechanism of metal uptake and translocation reflects the down‐regulation of promiscuous endogenous metal transporters revealing an internal feedback mechanism that limits seed loading with Fe. This promotes the preferential mobilization and loading of Fe, therefore displacing Cu and Cd in the seed.  相似文献   

18.
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.  相似文献   

19.
Real-time RT-PCR (RT-qPCR) is a sensitive and precise method of quantifying gene expression, however, suitable reference genes are required. Here, a systematic reference gene screening was performed by RT-qPCR on 22 candidate genes in Hevea brasiliensis. Two ubiquitin-protein ligases (UBC2a and UBC4) were the most stable when all samples were analyzed together. A mitosis protein (YLS8) and a eukaryotic translation initiation factor (eIF1Aa) were the most stable in response to tapping. UBC2b and UBC1 were the most stable among different genotypes. UBC2b and a DEAD box RNA helicase (RH2b) were the most stable across individual trees. YLS8 and RH8 were most stably expressed in hormone-treated samples. Expression of the candidate reference genes varied significantly across different tissues, and at least four genes (RH2b, RH8, UBC2a and eIF2) were needed for expression normalization. In addition, examination of relative expression of a sucrose transporter HbSUT3 in different RNA samples demonstrated the importance of additional reference genes to ensure accurate quantitative expression analysis. Overall, our work serves as a guide for selection of reference genes in RT-qPCR gene expression studies in H. brasiliensis.  相似文献   

20.
ATP-binding cassette transporter A1 (ABCA1) modulates plasma levels of high density lipoprotein (HDL), a cardiovascular protecting factor. Tree shrew was considered to be an animal protected from atherosclerosis characterized by high proportion of HDL in plasma. The cDNA clones and expression of tree shrew ABCA1 was identified using SMART-RACE and Real-Time PCR techniques respectively. The nucleotide sequence of tree shrew ABCA1 covered 7,762 bp, including a 6,786 bp coding region which encoded a 2,261 amino acids protein with the high identity to human ABCA1 (95%). Tree shrew ABCA1 was expressed in various tissues, the highest in lung, followed by liver, kidney, spleen and cardiac muscle in turn from high to medium expression levels. This pattern was partially different from that of human ABCA1 which was low in kidney and cardiac muscle. This work could shed new light on its role of ABCA1 in the distinctive HDL metabolism in tree shrew.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号