首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nipecotic acid is one of the most potent competitive inhibitors and alternative substrates for the high-affinity -aminobutyric acid transport system in neurons, but the structural basis of this potency is unclear. Because -aminobutyrate is a highly flexible molecule in solution, it would be expected to lose rotational entropy upon binding to the transport system, a change which does not favor binding. Nipecotic acid, in contrast, is a much less flexible molecule, and one would expect the loss of conformational entropy upon binding to be smaller thus favoring the binding of nipecotic acid over -aminobutyric acid. To investigate this possibility, the thermodynamic parameters, G°, H°, and S°, were determined for the binding of -aminobutyrate and nipecotic acid to the high affinity GABA transport system in synaptosomes. In keeping with expectations, the apparent entropy change for nipecotic acid binding (112±13 J·K–1) was more favorable than the apparent entropy change for -aminobutyric acid binding (61.3±6.6 J·K–1). The results suggest that restricted conformation per se is an important contributory factor to the affinity of nipecotic acid for the high-affinity transport system for -aminobutyric acid.This work was conducted when both authors were at the Department of Chemistry, University of Maryland, College Park.Special issue dedicated to Dr. Elling Kvamme.  相似文献   

3.
This study was conducted to investigate the effects of rumen-protected γ-aminobutyric acid (GABA) on feed intake, growth performance and expression of related genes in growing lambs. A total of 24 lambs weaned at age of 50 days were divided into four block of six based on their BW, six lambs within a block were allocated to three pairs, which were then assigned randomly to three treatments with addition of rumen-protected GABA at levels of 0, 70 or 140 mg/day for 6 weeks. Dry matter intake was recorded weekly in three consecutive days, and BW was recorded every two weeks. At the end of the trial, four lambs from each group were slaughtered, and duodenum and ileum mucosa were obtained for measurement of mRNA abundance of GABA receptor and cholecystokinin receptor. Dry matter intake was higher (P<0.01) in the lambs fed 140 mg/day GABA than that in the control or 70 mg GABA-fed lambs. Average daily gain and nutrients digestibility were not different (P>0.05) among treatments. Lambs fed 140 mg/day GABA had higher mRNA abundance of GABA-B receptor (P<0.01) and lower mRNA abundance of cholecystokinin-2 receptor (P<0.01) in duodenum mucosa. Serum CCK content was lower (P<0.01) in lambs fed 140 mg/day GABA than that in control. It is indicated that GABA may enhance feed intake by regulating GABA- and cholecystokinin-related genes.  相似文献   

4.
Summary Specific antisera to -melanotropin (-MSH) and corticotropin (ACTH 1-39) were used to obtain immunocytochemical evidence for the differential localization of -MSH and ACTH in the secretory granules of corticotropes of rat anterior pituitary. The specificity of the antisera was established by binding 131I-labeled -MSH and ACTH 1-39 to their respective antisera. Double-labeling immunocytochemistry (for -MSH, ferritin; for ACTH, colloidal gold) was performed. Some secretory granules were labeled with ferritin particles (-MSH), whereas others contained gold particles (ACTH). Only a few granules showed both ACTH and -MSH. In typical corticotropes (stellate in form with a small number of secretory granules aligned along the cell periphery) only some of the secretory granules that were labeled with anti-ACTH serum were also immunoreactive to anti--MSH. In atypical corticotropes (polygonal in shape and containing a large number of secretory granules) almost all of the immunoreactive ACTH secretory granules were also positive to anti--MSH serum. An intermediate type of corticotrope was observed containing a small number of secretory granules, almost all of which were labeled with anti--MSH. Thus, rat anterior pituitary corticotropes may be classified into three types according to the distribution and content of -MSH. The light-microscopic immuncytochemistry provided similar results.  相似文献   

5.
Steady-state levels of mRNA from individual -amylase genes were measured in the embryo and aleurone tissues of rice (Oryza sativa) and two varieties of barley (Hordeum vulgare L. cv. Himalaya and cv. Klages) during germination. Each member of the -amylase multigene families of rice and barley was differentially expressed in each tissue. In rice, -amylase genes displayed tissue-specific expression in which genes RAmy3B, RAmy3C, and RAmy3E were preferentially expressed in the aleurone layer, genes RAmy1A, RAmy1B and RAmy3D were expressed in both the embryo and aleurone, and genes RAmy3A and RAmy2A were not expressed in either tissue. Whenver two or more genes were expressed in any tissue, the rate of mRNA accumulation from each gene was unique. In contrast to rice, barley -amylase gene expression was not tissue-specific. Messenger RNAs encoding low- and high-pI -amylase isozymes were detectable in both the embryo and aleurone and accumulated at different rates in each tissue. In particular, peak levels of mRNA encoding high-pI -amylases always preceded those encoding low-pI -amylases. Two distinct differences in -amylase gene expression were observed between the two barley varieties. levels of high-pI -amylase mRNA peaked two days earlier in Klages embryos than in Himalaya embryos. Throughout six days of germination, Klages produced three times as much high-pI -amylase mRNA and nearly four times as much low-pI -amylase mRNA than the slower-germinating Himalaya variety.  相似文献   

6.
Synaptosomes isolated from mouse brain were incubated with [14C]glutamate and [3H]-aminobutyric acid ([3H]GABA), and then [14C]GABA (newly synthesized GABA) and [3H]GABA (newly captured GABA) in the synaptosomes were analysed. (1) the [3H]GABA was rapidly degraded in the synaptosomes, (2) when the synaptosomes were treated with gabaculine (a potent inhibitor of GABA aminotransferase), the degradation of [3H]GABA was strongly inhibited, (3) the gabaculine treatment brough about a significant increase in Ca2+-independent release of [3H]GABA with no effect on Ca2+-dependent release, (4) no effects of gabaculine on degradation and release of [14C]GABA were observed. The results indicate that there are at least two pools of GABA in synaptosomes and support the possibilities that GABA taken up into a pool which is under the influence of GABA aminotransferase is released Ca2+-independently and that GABA synthesized in another pool which is not under the influence of GABA aminotransferase is released Ca2+-dependently.  相似文献   

7.
Both glial and neuronal cells maintained in primary culture were found to accumulate [3H]GABA by an efficient high-affinity uptake system (apparentK m=9 M,V max=0.018 and 0.584 nmol/mg/min, respectively) which required sodium ions and was inhibited by 1 mM ouabain. Strychnine and parachloromercuriphenylsulfonate (pCS) (both at 1 mM) also strongly inhibited uptake of [3H]GABA, but metabolic inhibitors (2,4-dinitrophenol, potassium cyanide, and malonate) were without effect. Only three structural analogs of GABA (nipecotate, -alanine, and 2,4-diaminobutyrate) inhibited uptake of [3H]GABA, while several other compounds with structural similarities to GABA (e.g. glycine,l-proline, and taurine) did not interact with the system. The kinetic studies indicated presence of a second uptake (K m=92 M,V max=0.124 nmol/mg/min) in the primary cultures containing predominantly glioblasts. On the other hand, only one of the neuronal cell lines transformed by simian virus SV40 appeared to accumulate [3H]GABA against a concentration gradient. ApparentK m of this uptake was relatively high (819 M), and it was only weakly inhibited by 1 mM ouabain and 1 mM pCS. The structural specificity also differed from that of the uptake observed in the primary cultures. Significantly, none of the nontransformed continuous cell lines of either tumoral (glioma, C6; neuroblastoma, Ml; MINN) or normal (NN; I6) origin actively accumulated [3H]GABA. It is suggested that for the neurochemical studies related to GABA and requiring homogeneous cell populations, the primary cultures offer a better experimental model than the continuous cell lines.  相似文献   

8.
9.
An abamectin-resistant strain of Tetranychus cinnabarinus (Boisduval) (Rf = 25.3) was selected in laboratory. We compared the γ-aminobutyric acid (GABA) content in abamectin-susceptible T. cinnabarinus individuals with that in resistant individuals and investigated its relationship to abamectin resistance. High performance liquid chromatography (HPLC) was used to ascertain GABA content in abamectin-susceptible (SS) and resistant (AR) strains of T. cinnabarinus. The results indicate that GABA content in the AR was significantly higher than that in the SS (1.39-fold). AR individuals treated with a sublethal dose of abamectin did not show significant differences in GABA levels compared with AR individuals that were not treated with abamectin. However in the SS, abamectin treated individuals had a significantly higher GABA content than those that were untreated (1.52-fold). Individuals in the SS that survived from selection with LC95 of abamectin (SS-AR) showed significantly higher GABA levels compared to SS (1.41-fold). Similarly, progenies of the SS-AR parental generation (SS-ARF1) also showed increased GABA levels (1.51-fold) compared to SS. In addition, behavioral observations have shown that all individuals from the AR, SS-AR and SS-ARF1, which had more GABA content than the SS, demonstrated a significant decrease in crawling speed compared with SS individuals. This observation is consistent with excessive GABA levels had inhibitory effect on the central nervous system. Thus, we postulate that increasing GABA content in T. cinnabarinus is associated with resistance against abamectin.  相似文献   

10.
Summary The distribution in the rat oviduct of -aminobutyric acid and its catabolic enzyme GABA-transaminase was studied by the use of immunocytochemical and enzymehistochemical techniques. At the light-microscopic level, both GABA immunoreactivity and GABA-transaminase enzyme reactivity were found primarily in the tubal epithelium while in the muscle layers of the organ only a faint GABA and GABA-transaminase positive staining could be detected. Electron-microscopic evaluation of the GABA immunoreactivity revealed a heavy labelling of the basal bodies (kinetosomes) and a moderate staining of the cilia. These findings indicate that the role of GABA in the oviduct is not related to neurotransmission but may be related to ciliary functions.  相似文献   

11.
Corynebacterium glutamicum is widely used for industrial production of various amino acids and vitamins, and there is growing interest in engineering this bacterium for more commercial bioproducts such as γ-aminobutyric acid (GABA). In this study, a C. glutamicum GABA-specific transporter (GabP(Cg)) encoded by ncgl0464 was identified and characterized. GabP(Cg) plays a major role in GABA uptake and is essential to C. glutamicum growing on GABA. GABA uptake by GabP(Cg) was weakly competed by l-Asn and l-Gln and stimulated by sodium ion (Na(+)). The K(m) and V(max) values were determined to be 41.1 ± 4.5 μM and 36.8 ± 2.6 nmol min(-1) (mg dry weight [DW])(-1), respectively, at pH 6.5 and 34.2 ± 1.1 μM and 67.3 ± 1.0 nmol min(-1) (mg DW)(-1), respectively, at pH 7.5. GabP(Cg) has 29% amino acid sequence identity to a previously and functionally identified aromatic amino acid transporter (TyrP) of Escherichia coli but low identities to the currently known GABA transporters (17% and 15% to E. coli GabP and Bacillus subtilis GabP, respectively). The mutant RES167 Δncgl0464/pGXKZ9 with the GabP(Cg) deletion showed 12.5% higher productivity of GABA than RES167/pGXKZ9. It is concluded that GabP(Cg) represents a new type of GABA transporter and is potentially important for engineering GABA-producing C. glutamicum strains.  相似文献   

12.
Collybistin promotes submembrane clustering of gephyrin and is essential for the postsynaptic localization of gephyrin and γ-aminobutyric acid type A (GABA(A)) receptors at GABAergic synapses in hippocampus and amygdala. Four collybistin isoforms are expressed in brain neurons; CB2 and CB3 differ in the C terminus and occur with and without the Src homology 3 (SH3) domain. We have found that in transfected hippocampal neurons, all collybistin isoforms (CB2(SH3+), CB2(SH3-), CB3(SH3+), and CB3(SH3-)) target to and concentrate at GABAergic postsynapses. Moreover, in non-transfected neurons, collybistin concentrates at GABAergic synapses. Hippocampal neurons co-transfected with CB2(SH3-) and gephyrin developed very large postsynaptic gephyrin and GABA(A) receptor clusters (superclusters). This effect was accompanied by a significant increase in the amplitude of miniature inhibitory postsynaptic currents. Co-transfection with CB2(SH3+) and gephyrin induced the formation of many (supernumerary) non-synaptic clusters. Transfection with gephyrin alone did not affect cluster number or size, but gephyrin potentiated the clustering effect of CB2(SH3-) or CB2(SH3+). Co-transfection with CB2(SH3-) or CB2(SH3+) and gephyrin did not affect the density of presynaptic GABAergic terminals contacting the transfected cells, indicating that collybistin is not synaptogenic. Nevertheless, the synaptic superclusters induced by CB2(SH3-) and gephyrin were accompanied by enlarged presynaptic GABAergic terminals. The enhanced clustering of gephyrin and GABA(A) receptors induced by collybistin isoforms was not accompanied by enhanced clustering of neuroligin 2. Moreover, during the development of GABAergic synapses, the clustering of gephyrin and GABA(A) receptors preceded the clustering of neuroligin 2. We propose a model in which the SH3- isoforms play a major role in the postsynaptic accumulation of GABA(A) receptors and in GABAergic synaptic strength.  相似文献   

13.
The work investigated the properties and feasibility of using bacterial cellulose membrane (BCM) as a new and environmental friendly support carrier to immobilize glutamate decarboxylase (GAD) (a unique enzyme in the conversion of γ-aminobutyric acid (GABA) production). During cultivation, the porosities of BCM decreased successively with more extended fibrils piling above one another in a criss-crossing manner thus forming condensed and spatial structure. The BCM with this ultrafine network structure was found to immobilize GAD best via covalent binding because of the highest efficiency of immobilization (87.56% of the enzyme was bonded) and a good operational stability. And the covalent binding efficiency (amount of enzyme immobilized versus lost) was closely related to the porosity or the inner network of the BCM, not to the surface area. The capacity per surface area (mg/cm2) increased from 1.267 mg/cm2 to 3.683 mg/cm2 when the porosity of BCM ranged from 49% to 73.80%, while a declining trend of the loss of GAD specific activity (from 29.30%/cm2 to 7.38%/cm2) was observed when the porosity increased from 49.9% to 72.30%. Two non-linear regression relationships, between the porosity and loading capacity and between porosity and enzyme activity loss, were empirically modeled with the determination of coefficient R2 of 0.980 and 0.977, respectively. Finally, the established in vitro enzymatic conversion process demonstrated 6.03 g/L of GABA at 0.10 mol/L Glu, 60 min of retention time and 160 mL of suspension volume after the 1st run and a loss of 4.15% after the 4th run. The productivity of GABA was 6.03 g L?1 h?1, higher than that from other reported processes.  相似文献   

14.
Summary The -cells of the pancreatic islets have been shown to contain -aminobutyric acid (GABA) together with insulin. Autoradiographic analysis indicated that high affinity GABA binding sites (GABA receptors) are not present in the pancreas. High affinity GABA uptake sites are present, not in -cells, but in a few cells on the periphery of the islets. These observations cast doubt on the suggestion that GABA has a paracrine role in the pancreas.  相似文献   

15.
For the first time, the potential immunomodulators prostaglandin E2 and γ-aminobutyric acid (GABA) have been revealed in the plerocercoid Diphyllobothrium dendriticum, which is a parasite in the tissues and abdominal cavity of the Baikal omul Coregonus migratorius. The localization of immunomodulators in parasite tissues was compared with the location of typical markers of the nervous system (serotonin (5-HT) and FMRF-amide) and a marker of microtubules (α-tubulin). Prostaglandin E2 was revealed in the cells that are immunoreactive to α-tubulin and are situated in the cortical parenchyma outside the central nervous system (CNS). It is supposed that prostaglandin E2 is produced by the frontal glands and is carried out onto the tegument surface through specialized ducts. Immunoreaction to GABA was revealed in the central and peripheral nervous systems. GABA-ergic neurosomes, the neurites of which form a net on the surface of muscle layers and in the subtegument, were revealed in the cerebral ganglion and main nerve cords. The morphological characteristics for the identification of serotoninergic neurons in the CNS were described.  相似文献   

16.
4-Aminobutyraldehyde (ABAL) has been shown to cross the blood-brain barrier and to be converted rapidly to -aminobutyric acid (GABA) in various regions of the brain. In this paper, the formation of GABA from ABAL was studied with striatum that had suffered a lesion to GABA synthesis via glutamic acid decarboxylase (GAD). The GABA formation from ABAL was invariably observed in striatum in which GAD was severely inhibited by semicarbazide or kainic acid. Thus, this is another pathway for GABA formation.  相似文献   

17.
The GABase assay is widely used to rapidly and accurately quantify levels of extracellular γ-aminobutyric acid (GABA). Here we demonstrate a modification of this assay that enables quantification of intracellular GABA in bacterial cells. Cells are lysed by boiling and ethanolamine-O-sulphate, a GABA transaminase inhibitor is used to distinguish between GABA and succinate semialdehyde.  相似文献   

18.
19.
Summary 1. Intracellular and voltage-clamp recordings were obtained from a selected population of neuroscretory (ns) cells in the X organ of the crayfish isolated eyestalk. Pulses of -aminobutyric acid (GABA) elicited depolarizing responses and bursts of action potentials in a dose-dependent manner. These effects were blocked by picrotoxin (50 µM) but not by bicuculline. Picrotoxin also suppressed spontaneous synaptic activity.2. The responses to GABA were abolished by severing the neurite of X organ cells, at about 150 µm from the cell body. Responses were larger when the application was made at the neuropil level.3. Topical application of Cd2+ (2 mM), while suppressing synaptic activity, was incapable of affecting the responses to GABA.4. Under whole-cell voltage-clamp, GABA elicited an inward current with a reversal potential dependent on the chloride equilibrium potential. The GABA effect was accompanied by an input resistance reduction up to 33% at a –50 mV holding potential. No effect of GABA was detected on potassium, calcium, and sodium currents present in X organ cells.5. The effect of GABA on steady-state currents was dependent on the intracellular calcium concentration. At 10–6 M [Ca2+]i, GABA (50 µM) increased the membrane conductance more than threefold and shifted the zero-current potential from–25 to–10 mV. At 10–9 M [Ca2+]i, GABA induced only a 1.3-fold increase in membrane conductance, without shifting the zero-current potential.6. These results support the notion that in the population of X organ cells sampled in this study, GABA acts as an excitatory neurotransmitter, opening chloride channels.  相似文献   

20.
Brain Cell Biology - Protocols for in situ hybridization (ISH) of cultured cells often include storage in alcohol at ?20°C between fixation of the cultures and the ISH procedure. In...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号