首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 1 毫秒
1.
The ABC of auxin transport: the role of p-glycoproteins in plant development   总被引:21,自引:0,他引:21  
Geisler M  Murphy AS 《FEBS letters》2006,580(4):1094-1102
A surprising outcome of the Arabidopsis genome project was the annotation of a large number of sequences encoding members of the ABC transporter superfamily, including 22 genes encoding the p-glycoprotein (PGP) subfamily. As mammalian PGP orthologs are associated with multiple drug resistance, plant PGPs were initially presumed to function in detoxification, but were soon seen to have a developmental role. Here, we summarise recent studies of plant PGPs indicating that PGPs mediate the cellular and long-distance transport of the plant hormone auxin. One class of PGPs, represented by AtPGP1, catalyze auxin export, while another class with at least one member, AtPGP4, appears to function in auxin import. Current models on the physiological role of PGPs, their functional interaction and their involvement in cell-to cell (polar) auxin transport are discussed.  相似文献   

2.
Previous data have suggested an involvement of MDR/PGP-like ABC transporters in transport of the plant hormone auxin and, recently, AtPGP1 has been demonstrated to catalyze the primary active export of auxin. Here we show that related isoform AtPGP4 is expressed predominantly during early root development. AtPGP4 loss-of-function plants reveal enhanced lateral root initiation and root hair lengths both known to be under the control of auxin. Further, atpgp4 plants show altered sensitivities toward auxin and the auxin transport inhibitor, NPA. Finally, mutant roots reveal elevated free auxin levels and reduced auxin transport capacities. These results together with yeast growth assays suggest a direct involvement of AtPGP4 in auxin transport processes controlling lateral root and root hair development.  相似文献   

3.
4.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate (MVA), which is a rate-limiting step in the isoprenoid biosynthesis via the MVA pathway. In this study, the full-length cDNA encoding HMGR (designated as SmHMGR2, GenBank accession no. FJ747636) was isolated from Salvia miltiorrhiza by rapid amplification of cDNA ends (RACE). The cloned gene was then transformed into the hairy root of S. miltiorrhiza, and the enzyme activity and production of diterpenoid tanshinones and squalene were monitored. The full-length cDNA of SmHMGR2 comprises 1959 bp, with a 1653-bp open reading frame encoding a 550-amino-acid protein. Molecular modeling showed that SmHMGR2 is a new HMGR with a spatial structure similar to other plant HMGRs. SmHMGR2 contains two HMG-CoA-binding motifs and two NADP(H)-binding motifs. The SmHMGR2 catalytic domain can form a homodimer. The deduced protein has an isoelectric point of 6.28 and a calculated molecular weight of approximately 58.67 kDa. Sequence comparison analysis showed that SmHMGR2 had the highest homology to HMGR from Atractylodes lancea. As expected, a phylogenetic tree analysis indicates that SmHMGR2 belongs to plant HMGR group. Tissue expression pattern analysis shows that SmHMGR2 is strongly expressed in the leaves, stem, and roots. Functional complementation of SmHMGR2 in HMGR-deficient mutant yeast JRY2394 demonstrates that SmHMGR2 mediates the MVA biosynthesis in yeasts. Overexpression of SmHMGR2 increased enzyme activity and enhanced the production of tanshinones and squalene in cultured hairy roots of S. miltiorrhiza. Our DNA gel blot analysis has confirmed the presence and integration of the associated SmHMGR2 gene. SmHMGR2 is a novel and important enzyme involved in the biosynthesis of diterpenoid tanshinones in S. miltiorrhiza.  相似文献   

5.
6.
Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10 d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00–2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g−1 FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.  相似文献   

7.
Haijun Liu 《BBA》2009,1787(8):1029-1038
The Arabidopsis thaliana mutant psbo1 has recently been described and characterized. Loss of expression of the PsbO-1 protein leads to a variety of functional perturbations including elevated levels of the PsbO-2 protein and defects on both the oxidizing- and reducing-sides of Photosystem II. In this communication, two plant lines were produced using the psbo1 mutant as transgenic host, which contained an N-terminally histidine6-tagged PsbO-1 protein. This protein was expressed and correctly targeted into the thylakoid lumen. Immunological analysis indicated that different levels of expression of the modified PsbO-1 protein were obtained in different transgenic plant lines and that the level of expression in each line was stable over several generations. Examination of the Photosystem II closure kinetics demonstrated that the defective double reduction of QB and the delayed exchange of QBH2 with the plastoquinone pool which were observed during the characterization of the psbo1 mutant were effectively restored to wild-type levels by the His6-tagged PsbO-1 protein. Flash fluorescence induction and decay were also examined. Our results indicated that high expression of the modified PsbO-1 was required to increase the ratio of PS IIα/PS IIβ reaction centers to wild-type levels. Fluorescence decay kinetics in the absence of DCMU indicated that the expression of the His6-tagged PsbO-1 protein restored efficient electron transfer to QB, while in the presence of DCMU, charge recombination between QA and the S2 state of the oxygen-evolving complex occurred at near wild-type rates. Our results indicate that high expression of the His6-tagged PsbO-1 protein efficiently complements nearly all of the photochemical defects observed in the psbo1 mutant. Additionally, this study establishes a platform on which the in vivo consequences of site-directed mutagenesis of the PsbO-1 protein can be examined.  相似文献   

8.
Insect galls are abnormal plant tissues induced by galling insects. The galls are used for food and habitation, and the phytohormone auxin, produced by the insects, may be involved in their formation. We found that the silkworm, a non-galling insect, also produces an active form of auxin, indole-3-acetic acid (IAA), by de novo synthesis from tryptophan (Trp). A detailed metabolic analysis of IAA using IAA synthetic enzymes from silkworms indicated an IAA biosynthetic pathway composed of a three-step conversion: Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA, of which the first step is limiting IAA production. This pathway was shown to also operate in gall-inducing sawfly. Screening of a chemical library identified two compounds that showed strong inhibitory activities on the conversion step IAAld → IAA. The inhibitors can be efficiently used to demonstrate the importance of insect-synthesized auxin in gall formation in the future.  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号