首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The two-spotted spider mite, Tetranychus urticae, is a worldwide pest species that overwinters as diapausing females. Cold hardening is presumed to start during diapause development to ensure the successful overwintering of this species. To address this hypothesis, we compared cold tolerance between non-diapausing and diapausing females. We measured supercooling point (SCP) and survival to acute cold stress by exposing the mites at a range of sub-zero temperatures (from −4 to −28 °C for 2 h). The mean SCPs of non-diapausing and diapausing females were −19.6±0.5 and −24.7±0.3 °C respectively, and freezing killed the mites. Diapausing females were significantly more cold tolerant than non-diapausing ones, with LT50 of −19.7 and −13.3 °C, respectively. Further, we also examined the effects of cold acclimation (10 d at 0 or 5 °C) in non-diapausing and diapausing females. Our findings indicated that diapause decreased SCP significantly, while cold acclimation had no effect on the SCP except for non-diapausing females that were acclimated at 5 °C. Acclimation at 5 °C enhanced survival to acute cold stress in diapausing and non-diapausing females, with LT50 of −22.0 and −17.1 °C, respectively. Altogether, our results indicate that T. urticae is a chill tolerant species, and that diapause and cold acclimation elevate cold hardiness in this species.  相似文献   

2.
Understanding the mechanisms by which aphids survive low temperature is fundamental in forecasting the risk of pest outbreaks. Aphids are chill susceptible and die at a temperature close to that at which a small exothermal event is produced. This event, which can be identified using differential scanning calorimetry (DSC), normally occurs at a higher temperature than the supercooling point (SCP) and has been termed a pre-freeze event (PFE). However, it is not known what causes the PFE or whether it signifies the death of the aphid. These questions are addressed here by using a sensitive DSC to quantify the PFE and SCP and to relate these thermal events to the lower lethal temperature (LT50) of sub-Antarctic aphids acclimated to low temperatures. PFEs were observed in each of the 3 species of aphids examined. They occurred over a narrower temperature range and at a higher temperature range than the SCP (−8.2 to −13.8 and −5.6 to −29.8 °C, respectively). Increased acclimation temperature resulted in increased SCPs in Myzus ascalonicus but not in Rhopalosiphum padi. The LT50 reduced by approximately 1 °C from −9.3 to −10.5 °C with reduced acclimation temperature (10–0 °C). The LT50 was close to the temperature at which the PFE occurred but statistically significantly higher than either the PFE or the SCP. In the majority of cases the PFE exotherm occurred well before the main exotherm produced by the bulk of the insect’s body water freezing (SCP). However, in a few cases it occurred at the same temperature or before the super-cooling point making the term, pre-freeze event (PFE), rather misleading. The possible origins of the PFE are discussed.  相似文献   

3.
There is more evidence that interleukin-10 (IL-10), as a multifunctional regulatory cytokine of inflammatory responses, may have an important role in type 2 diabetes (T2D). However, genetic association studies that evaluated the relationship between IL-10 gene variants and T2D have produced conflicting results. The aim of this study was to determine whether the IL-10 gene polymorphisms (− 592A/C, − 1082G/A, − 819T/C) conferred susceptibility to T2D through a meta-analysis. A comprehensive search was conducted to examine all the eligible studies. A total of 9 studies involving 2838 T2D patients and 2773 controls were considered in the meta-analysis. Overall, there was no significant association between IL-10 − 592A/C and T2D (A vs C: OR = 0.93, P = 0.625; AA + AC vs CC: OR = 0.89, P = 0.511; AA vs AC + CC: OR = 0.93, P = 0.821). We failed to find the association between the IL-10 − 1082G allele and T2D (OR = 1.04, P = 0.430), but the genotypes of the IL-10 − 1082G/A polymorphism conferred a risk for the development of T2D (GA vs AA: OR = 1.21, P = 0.027; GG + GA vs AA: OR = 1.17, P = 0.048). Analysis of the − 819T/C polymorphism revealed no significant association with T2D (T vs C: OR = 1.04, P = 0.853; TT + TC vs CC: OR = 1.07, P = 0.834; TT vs TC + CC: OR = 1.08, P = 0.824). In conclusion, the present meta-analysis suggests association between the IL-10 − 1082G/A polymorphism and T2D. However, additional well-designed and larger scale primary studies are required to further evaluate the IL-10 gene polymorphisms and T2D.  相似文献   

4.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

5.
Metabolic syndrome (MetS) may have increased cortisol (F) production caused by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in liver and adipose tissue and/or by HPA axis dysregulation. F is then mainly metabolized by liver reductases into inactive tetrahydrometabolites (THMs). We measured THM levels in patients with or without MetS and evaluate the correlation between THMs and anthropometric and biochemical parameters. We recruited 221 subjects, of whom 130 had MetS by ATP III. We evaluated F, cortisone (E), adipokines, glucose, insulin and lipid profiles as well as urinary (24 h) F, E and THM levels. β Cell function was estimated by the HOMA Calculator. We observed that patients with MetS showed higher levels of THMs, HOMA-IR and leptin and lower levels of adiponectin and HOMA-β but no differences in F and E in plasma or urine. THM was associated with weight (r = +0.44, p < 0.001), waist circumference (r = +0.38, p < 0.01), glycemia (r = +0.37, p < 0.01), and triglycerides (r = +0.18, p = 0.06) and negatively correlated with adiponectin (r = −0.36, p < 0.001), HOMA-β (r = −0.21, p < 0.001) and HDL (r = −0.29, p < 0.01). In a logistic regression model, THM levels were associated with hypertension, hyperglycemia and dyslipidemia. We conclude that MetS is associated with increased urinary THMs but not with F and E levels in plasma or urine. Increased levels of THM, reflecting the daily cortisol production subsequently metabolized, are correlated with hypoadiponectinemia, hypertension, dyslipidemia, insulin resistance and β cell dysfunction. A subtle increased in glucocorticoid production may further account for the phenotypic and biochemical similarities observed in central obesity and Cushing’s syndrome.  相似文献   

6.
Light use efficiency (LUE) is an important variable in carbon cycle and climate change research. We present an investigation of remotely estimating midday LUE using the green chlorophyll index (CIgreen) derived from the cloud-free Moderate Resolution Imaging Spectroradiometer (MODIS) images in maize, coniferous forest and grassland. Similar temporal patterns are observed in both canopy chlorophyll content and midday LUE which indicates that the chlorophyll content in the maize canopy servers as a proxy of midday LUE (R2 = 0.736, p < 0.001). Therefore, the CIgreen, tested as a good indicator of canopy chlorophyll content (R2 = 0.840, p < 0.001), has been demonstrated to be a reliable candidate in providing reasonable estimates of midday LUE with determination coefficient R2 equals to 0.820 and a root mean square error (RMSE) of 0.002 mol CO2 per mol incident photosynthetic photon flux density (PPFD). Further validation of the prediction model derived from the maize site demonstrates that the CIgreen has potential to be applied in the coniferous forest and grassland ecosystems with RMSE of 0.005 and 0.004 mol CO2 mol−1 PPFD, respectively. A comparison analysis between different vegetation types is included and these results could be helpful in the development of future LUE and terrestrial models.  相似文献   

7.
Formation of DNA quadruplexes requires monovalent cation binding. To characterize the cation binding stoichiometry and linkage between binding and folding, we carried out KCl titrations of Tel22 (d[A(GGGTTA)3]), a model of the human telomere sequence, using a fluorescent indicator to determine [K+]free and circular dichroism to assess the extent of folding. At [K+]free = 5 mM (sufficient for > 95% folding), the apparent binding stoichiometry is 3K+/Tel22; at [K+]free = 20 mM, it increased to 8-10K+/Tel22. Thermodynamic analysis shows that at [K+]free = 5 mM, K+ binding contributes approximately − 4.9 kcal/mol for folding Tel22. The overall folding free energy is − 2.4 kcal/mol, indicating that there are energetically unfavorable contributions to folding. Thus, quadruplex folding is driven almost entirely by the energy of cation binding with little or no contribution from other weak molecular interactions.  相似文献   

8.
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50) = 250 nM and kinact = 1.4 × 104 M−1 s−1 for Hg2+ and IC50 = 1.4 μM and kinact = 2 × 102 M−1 s−1 for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50 = 3 and 20 μM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.  相似文献   

9.
A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3−xPW12O40 (0 ≤ x ≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x = 2 and Cs2-PTA content of 5 wt%. The value is 6 × 10−3 S cm−1 and 1.75 × 10−2 S cm−1 at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6 × 10−7, 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1 × 104/S cm−3 s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells.  相似文献   

10.
11.
Two conceptual models of plant zonation in peatland lakes are given. The first represents vegetation on slightly sloping substrate (N < 0.2) in shallow and relatively large lakes. The vegetation is not diverse (H′ = 0.0 ± 0.01). The frequency and biomass of the dominant (Sphagnum denticulatum) correlate positively with lake size, and negatively with depth and substrate slope. They are also correlated with water transparency and water color (r = −0.53), concentrations of total organic carbon (r = −0.43), Ca2+ (r = 0.40) and humic acids (r = −0.46), and redox potential (r = 0.44). The second model represents vegetation on steep peat walls (N > 0.3) in deep, usually small lakes. Plants occur only on the upper part of the peat wall or form a multispecies curtain hanging from the lip of peat at the top. Species diversity in this scenario is higher (H′ = 0.18 ± 0.17). The curtains usually are composed of mosses such as Warnstorfia exannulata, S. cuspidatum and S. riparium, and vascular plants are rare. The frequency and biomass of bryophytes in this type of structure are related to substrate slope (r = 0.56), lake depth (r = 0.56), Ca2+ concentration (r = −0.69) and water color (r = −0.51). In both models, plant biomass is correlated with temperature (r = −0.78), irradiance (r = −0.64) and water oxygenation (r = −0.54).  相似文献   

12.
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400 h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD = −3.1 MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5 °C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20–30 days Tmax ≥ 35 °C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r2 from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.  相似文献   

13.

Background

Type 1 diabetes mellitus (T1DM) is recognized as a T-cell-mediated autoimmune disease. Vitamin D compounds are known to suppress T-cell activation by binding to vitamin D receptor (VDR); and thus, VDR gene polymorphisms may be related to T-cell-mediated autoimmune diseases. The aim of this study was to investigate the association between vitamin D status and VDR gene polymorphisms and T1DM.

Materials and methods

One hundred and twenty patients with T1DM and one hundred and twenty controls were enrolled in the study. VDR gene BsmI, FokI, ApaI and TaqI polymorphisms were determined using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Serum 25-hydroxyvitamin D (25(OH)D) was determined using ELISA.

Result

Serum 25(OH)D levels revealed a vitamin D deficiency or insufficiency in 75% of the patients. The mean levels of vitamin D were significantly lower in patients as compared to their controls (P = < 0.001). VDR BsmI Bb and bb genotypes and VDR FokI Ff and ff genotypes were associated with increased risk of T1DM (OR = 2.3, 95% CI = 1.3–4.2, P = 0.005; OR = 2.2, 95% CI = 1.1–4.7, P = 0.04; OR = 1.8, 95% CI = 1.03–3.04, P = 0.04; OR = 4.03, 95% CI = 1.2–13.1, P = 0.01 respectively), while the VDR ApaI and TaqI polymorphisms were not.

Conclusion

Our study indicated that vitamin D deficiency and VDR BsmI and FokI polymorphisms were associated with T1DM in Egyptian children.  相似文献   

14.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

15.
1H NMR spectroscopy was used to follow the cleavage of sucrose by invertase. The parameters of the enzyme's kinetics, Km and Vmax, were directly determined from progress curves at only one concentration of the substrate. For comparison with the classical Michaelis-Menten analysis, the reaction progress was also monitored at various initial concentrations of 3.5 to 41.8 mM. Using the Lambert W function the parameters Km and Vmax were fitted to obtain the experimental progress curve and resulted in Km = 28 mM and Vmax = 13 μM/s. The result is almost identical to an initial rate analysis that, however, costs much more time and experimental effort. The effect of product inhibition was also investigated. Furthermore, we analyzed a much more complex reaction, the conversion of farnesyl diphosphate into (+)-germacrene D by the enzyme germacrene D synthase, yielding Km = 379 μM and kcat = 0.04 s− 1. The reaction involves an amphiphilic substrate forming micelles and a water insoluble product; using proper controls, the conversion can well be analyzed by the progress curve approach using the Lambert W function.  相似文献   

16.
This study presents an indirect method for estimating growth rates of young-of-the-year (YOY) tautog, Tautoga onitis, based on laboratory calibration experiments and nucleic acid-based indices. Field-collected tautog were held in the laboratory at 3 temperatures over a 17-day period. Four feeding levels were used to produce a range of growth rates. An ultraviolet absorption assay was used to measure nucleic acid concentrations in white muscle tissue. The strength of the relationship between growth rate and three nucleic acid-based parameters (RNA concentration, DNA concentration, RNA/DNA ratio (R/D)) was tested. Correlation results indicated a significant positive relationship between R/D and weight-based instantaneous growth rate (G) (r = 0.68; p < 0.001). Both R/D (r = − 0.55; p < 0.006) and RNA (r = − 0.56; p < 0.005) were highly negatively correlated with temperature (T). Multiple linear regression showed that R/D and temperature explained 61% of the variability in growth, resulting in the model G = 0.01285(R/D) + 0.00057(T) − 0.03205 (p < 0.0001). This R/D-temperature model can be used to evaluate recent growth rates in YOY tautog under field conditions and has applications for aquaculture when comparing growth rates of fish held under different culture conditions.  相似文献   

17.
Conidial tolerance to the upper thermal limits of summer is important for fungal biocontrol agents, whose conidia are formulated into mycoinsecticides for field application. To develop an efficient assay system, aerial conidia of eight Metarhizium anisopliae, four M. anisopliae var. anisopliae, and six M. anisopliae var. acridum isolates with different host and geographic origins were wet-stressed for ≤180 min at 48 °C or incubated for 14 d colony growths at 10-35 °C. The survival ratios (relative to unstressed conidia) of each isolate, examined at 15-min intervals, fit a logistic equation (r2 ≥ 0.975), yielding median lethal times (LT50s) of 14.3-150.3 min for the 18 isolates stressed at 48 °C. Seven grasshopper isolates from Africa had a mean LT50 of 110 (73-150) min, but could not grow at 10 or 15 °C. The mean LT50 of five non-grasshopper isolates capable of growing at 10-35 °C was 16 (10-26) min only. Three isolates with typically low (type I), medium (type II), and high (type III) levels of tolerance to 48 °C were further assayed for ≤4-d tolerance of their conidia to the wet stress at 38, 40, 42, or 45 °C. The resultant LT50s decreased to 20, 53 and 167 min at 48 °C from 507, 1612, and 8256 min at 38 °C for types I, II and III, respectively. For the distinguished types, the logarithms of the LT50s were significantly correlated to the temperatures of 38-48 °C with an inverse linearity (r2 ≥ 0.88). The method developed to assay quantitatively fungal thermotolerance would be useful for screening of fungal candidates for improved pest control in summer.  相似文献   

18.
A new series of dinuclear 2,5-pyrazine dicarboxylato-bridged copper(II) complexes were synthesized and characterized by spectroscopic techniques. The complexes have the general structural formula [Cu2(L)2(μ-pyzdc)](ClO4)2·nH2O where L = TPA, n = 2 (1); L = pmedien, n = 2 (2); L = aepn, n = 3 (3); L = dpt, n = 2 (4); L = Medpt, n = 0 (5); L = dien, n = 0 (6) and L = MeDPA, n = 2 (7) with TPA = tris(2-pyridylmethyl)amine, pmdien = N,N,N′,N′′,N′′-pentamethyldiethylenetriamine, aepn = N-(2-aminoethyl)-1,3-diaminopropane, dpt = dipropylene-triamine, Medpt = 3,3′-diamino-N-methyldipropylamine, dien = diethylenetriamine, MeDPA = N,N-di(2-pyridylmethyl)methylamine. In these complexes, the bridging nature of the 2,5-pyrazine dicarboxylato ligand (pyzdc) was confirmed by single-crystal X-ray crystallography. The structure of the TPA complex 1 consists of μ-pyzdc bridging two Cu(II) centers in a bis(monodentate) bonding fashion through a single oxygen atom supplied by each carboxylate group of the bridged pyzdc in a distorted trigonal bipyramidal geometry achieved by the four nitrogen atoms from the TPA ligand. In the complexes 2-5 derived from tridentate amines, the bridged pyzdc acts as a bis(bidentate) ligand in a distorted square pyramidal geometry achieved by one nitrogen and one carboxylate-oxygen of pyzdc, and by the three N-atoms of the amine coligands. The intradimer Cu?Cu distances in the complexes 2-5 are in the range 6.97-7.45 ? and in it is 10.96 ? in 1. The corresponding intermolecular distances are even shorter (5.34-7.99 ?). The susceptibility measurements at variable temperatures over the 5-300 K range reveal weak antiferromagnetic coupling with J values ranging from −0.61 to −4.78 cm−1.  相似文献   

19.
Norway spruce (Picea abies (L.) Karst.) exhibits strong ecotypic variation along altitudinal gradients in morphological traits, e.g. slenderness of crowns or arrangement of second-order branches. We were interested whether montane and lowland morphotypes differ in a key trait for the survival in cold environments, i.e. frost hardiness, and asked: (i) are montane morphotypes more resistant to frost damage and (ii) do they have a lower risk of frost damage by late frosts in spring than lowland morphotypes?We used the electrolyte leakage-method to measure frost hardiness on a monthly basis from October 2006 to May 2007 in stands of the montane and lowland morphotypes at Mt. Brocken in the Harz Mountains, Germany.LT50 (i.e. the temperature that results in 50% of maximum electrolyte leakage) was assessed by freezing treatments in a frost chamber and was significantly influenced by morphotype, month and minimum ambient temperatures. LT50 was significantly lower in the montane than in the lowland morphotype, with −107 °C and −49 °C, respectively. However, the interactions between morphotype with minimum ambient temperature or month were not significant. Thus, as frost hardiness of the two morphotypes responded to temperature in the same way, both morphotypes can be supposed to be exposed to the same risk of frost damage during hardening in autumn and dehardening in spring.  相似文献   

20.
Reaction of fresh Mn(OH)2 precipitate and S-carboxymethyl-l-cysteine (H2SCMC) in aqueous solution afforded a novel chiral 3D coordination polymer Mn(H2O)(SCMC) 1, which crystallizes in the acentric polar space group P21 with cell constants = 5.079(1) Å, = 9.617(2) Å, = 8.649(2) Å, β = 94.40(3)°, = 421.2(1) Å3, = 2, and exhibit a SHG effect and ferroelectricity (a remnant polarization Pr = 0.0159 uC cm−2, coercive field Ec = 0.83 kV cm−2, saturation of the spontaneous polarization Ps = 0.234 uC cm−2). To the best of our knowledge, the present compound represents the first example of S-carboxymethyl-l-cysteine coordination polymers that exhibit possible ferroelectric behavior. The structural analysis revealed that the Mn2+ ions in 1 are each coordinated by one N atom and five O atoms of four S-carboxymethyl-l-cysteine ligand bridges four symmetry-related Mn2+ ions to form 3D MOF of 66 topology type with irregular chiral channels extending along [1 0 0]. The temperature-dependent magnetic susceptibilities shows that 1 obeys Curie-Weiss law χm = C/(T − Θ) with C = 4.23 cm3 mol−1 K and Θ = −5.86 K and the best fit gave a weak antiferromagnetic coupling (J = −0.282(5) cm−1) among Mn ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号