首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

18.
In our study, EPR spin-trapping technique was employed to study dark production of two reactive oxygen species, hydroxyl radicals (OH) and singlet oxygen (1O2), in spinach photosystem II (PSII) membrane particles exposed to elevated temperature (47 °C). Production of OH, evaluated as EMPO-OH adduct EPR signal, was suppressed by the enzymatic removal of hydrogen peroxide and by the addition of iron chelator desferal, whereas externally added hydrogen peroxide enhanced OH production. These observations reveal that OH is presumably produced by metal-mediated reduction of hydrogen peroxide in a Fenton-type reaction. Increase in pH above physiological values significantly stimulated the formation of OH, whereas the presence of chloride and calcium ions had the opposite effect. Based on our results it is proposed that the formation of OH is linked to the thermal disassembly of water-splitting manganese complex on PSII donor side. Singlet oxygen production, followed as the formation of nitroxyl radical TEMPO, was not affected by OH scavengers. This finding indicates that the production of these two species was independent and that the production of 1O2 is not closely linked to PSII donor side.  相似文献   

19.
Nitric oxide (NO) is a diffusible messenger that conveys information based on its concentration dynamics, which is dictated by the interplay between its synthesis, inactivation and diffusion. Here, we characterized NO diffusion in the rat brain in vivo. By direct sub-second measurement of NO, we determined the diffusion coefficient of NO in the rat brain cortex. The value of 2.2 × 10−5 cm2/s obtained in vivo was only 14% lower than that obtained in agarose gel (used to evaluate NO free diffusion). These results reinforce the view of NO as a fast diffusing messenger but, noticeably, the data indicates that neither NO diffusion through the brain extracellular space nor homogeneous diffusion in the tissue through brain cells can account for the similarity between NO free diffusion coefficient and that obtained in the brain. Overall, the results support that NO diffusion in brain tissue is heterogeneous, pointing to the existence of a pathway that facilitates NO diffusion, such as cell membranes and other hydrophobic structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号