共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrew C. Stainthorpe J. Colin Murrell George P. C. Salmond Howard Dalton Veronica Lees 《Archives of microbiology》1989,152(2):154-159
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. In addition, this enzyme complex oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study, we have used biochemical data obtained from purification and characterization of the soluble MMO from Methylococcus capsulatus (Bath), to identify structural genes encoding this enzyme by oligonucleotide probing. The genes encoding the and subunits of MMO were found to be chromosomally located and were linked in this organism. We report here on the analysis of a recombinant plasmid containing 12 kilobases of Methylococcus DNA and provide the first evidence for the localization and linkage of genes encoding the methane monooxygenase enzyme complex. DNA sequence analysis suggests that the primary structures of the and subunit of MMO are completely novel and the complete sequence of these genes is presented. 相似文献
2.
Berven FS Karlsen OA Straume AH Flikka K Murrell JC Fjellbirkeland A Lillehaug JR Eidhammer I Jensen HB 《Archives of microbiology》2006,184(6):362-377
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting β-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP () predicted 43 β-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8–3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins (). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph. 相似文献
3.
Kao WC Wang VC Huang YC Yu SS Chang TC Chan SI 《Journal of inorganic biochemistry》2008,102(8):1607-1614
Earlier work from our laboratory has indicated that a hemerythrin-like protein was over-produced together with the particulate methane monooxygenase (pMMO) when Methylococcus capsulatus (Bath) was grown under high copper concentrations. A homologue of hemerythrin had not previously been found in any prokaryote. To confirm its identity as a hemerythrin, we have isolated and purified this protein by ion-exchange, gel-filtration and hydrophobic interaction chromatography, and characterized it by mass spectrometry, UV-visible, CD, EPR and resonance Raman spectroscopy. On the basis of biophysical and multiple sequence alignment analysis, the protein isolated from M. capsulatus (Bath) is in accord with hemerythrins previously reported from higher organisms. Determination of the Fe content in conjunction with molecular-weight estimation and mass analysis indicates that the native hemerythrin in M. capsulatus (Bath) is a monomer with molecular mass 14.8 kDa, in contrast to hemerythrins from other eukaryotic organisms, where they typically exist as a tetramer or higher oligomers. 相似文献
4.
James A. Zahn David M. Arciero A. B. Hooper Joel R. Coats A. A. DiSpirito 《Archives of microbiology》1997,168(5):362-372
A bacterial cytochrome c peroxidase was purified from the obligate methanotroph Methylococcus capsulatus Bath in either the fully oxidized or the half reduced form depending on the purification procedure. The cytochrome was a
homo-dimer with a subunit mol mass of 35.8 kDa and an isoelectric point of 4.5. At physiological temperatures, the enzyme
contained one high-spin, low-potential (E
m7 = –254 mV) and one low-spin, high-potential (E
m7 = +432 mM ) heme. The low-potential heme center exhibited a spin-state transition from the penta-coordinated, high-spin configuration
to a low-spin configuration upon cooling the enzyme to cryogenic temperatures. Using M. capsulatus Bath ferrocytochrome c
555 as the electron donor, the K
M and V
max for peroxide reduction were 510 ± 100 nM and 425 ± 22 mol ferrocytochrome c
555 oxidized min–1 (mole cytochrome c peroxidase)–1, respectively.
Received: 6 January 1997 / Accepted: 27 May 1997 相似文献
5.
The effect of copper supplementation on growth, methane monooxygenase activity and lipid composition of Methylococcus capsulatus (Bath) was studied. Copper increased biomass yield, methane monooxygenase activity and phospholipid content from 7.7 to 10.2% of dry weight. Cells from copper-deficient and copper supplemented cultures contained the same major fatty acids but in the presence of copper only the contents of C16:0 and the three C16:1 isomers were increased while the contents of C14:0 and cyclic C17:0 remained unchanged. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol and cardiolipin were analysed amongst the polar lipids. PE was the main component (about 60 mol-%) but the most notable copper-induced increment occurred in the proportion of PC, from about 10 to 16 mol-%. Concomitantly with this increment the fatty acids of PC were changed so that the mol-% of C16: 1 isomers were increased at the expense of other acids. Similar trends were seen also in the fatty acid compositions of other polar lipid fractions. It is therefore concluded that phosphatidylcholine would be one of the key factors when the role of membranous lipids in methane monooxygenase activity is to be considered. 相似文献
6.
A. Fjellbirkeland Hans Kleivdal Carsten Joergensen Helle Thestrup Harald B. Jensen 《Archives of microbiology》1997,168(2):128-135
Membranes obtained from whole-cell lysates of Methylococcus capsulatus (Bath) were separated by Triton X-100 extraction. The resulting insoluble fraction was enriched in outer membranes as assessed
by electron microscopy and by the content of β-hydroxy palmitic acid and particulate methane monooxygenase. Major proteins
with molecular masses of approximately 27, 40, 46, 59, and 66 kDa were detected by SDS-PAGE of the Triton-X-100-insoluble
membranes. MopA, MopB, MopC, MopD, and MopE (Methylococcus outer membrane protein) are proposed to designate these proteins. Several of the Mop proteins exhibited heat-modifiable properties
in SDS-PAGE and were influenced by the presence of 2-mercaptoethanol in the sample buffer. The 46- and 59-kDa bands migrated
as a single high-molecular-mass 95-kDa oligomer under mild denaturing conditions. When reconstituted into black lipid membranes,
this oligomer was shown to serve as a channel with an estimated single-channel conductance of 1.4 nS in 1 M KCl.
Received: 20 December 1996 / Accepted: 11 April 1997 相似文献
7.
R. Csáki T. Hanczár L. Bodrossy J.C. Murrell K.L. Kovács 《FEMS microbiology letters》2001,205(2):203-207
The first gene cluster encoding for a membrane bound [NiFe] hydrogenase from a methanotroph, Methylococcus capsulatus (Bath), was cloned and sequenced. The cluster consisted of the structural genes hupS and hupL and accessory genes hupE, hupC and hupD. A DeltahupSL deletion mutant of Mc. capsulatus was constructed by marker exchange mutagenesis. Membrane associated hydrogenase activity disappeared. The membrane associated hydrogenase appeared to have a hydrogen uptake function in vivo. 相似文献
8.
Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain bath 总被引:1,自引:0,他引:1
Soluble extracts of Methylococcus capsulatus (Bath) that readily oxidise methane to methanol will also oxidise ammonia to nitrite via hydroxylamine. The ammonia oxidising activity requires O2, NADH and is readily inhibited by methane and specific inhibitors of methane mono-oxygenase activity. Hydroxylamine is oxidised to nitrite via an enzyme system that uses phenazine methosulphate (PMS) as an electron acceptor. The estimated K
mvalue for the ammonia hydroxylase activity was 87 mM but the kinetics of the oxidation were complex and may involve negative cooperativity.Abbreviations PMS
Phenazine methosulphate
- NADH
nicotinamide adenine dinucleotide, reduced form
-
K
m
Michaelis constant
- NO
2
-
nitrite
- NH2OH
hydroxylamine 相似文献
9.
Anthony O'L Richards Stephen H. Stanley Motoshi Suzuki Howard Dalton 《Biocatalysis and Biotransformation》1994,8(4):253-267
Methylococcus capsulatus (Bath) possesses methane monooxygenases (soluble - (sMMO) and particulate - (pMMO)) which are able to catalyse the epoxidation of propylene to propylene oxide. In a previous paper we have shown that the production of the epoxide caused a rapid inactivation of the bioconversion process (Stanley et al, 1992). This paper shows that cultures containing pMMO, inactivated by propylene oxide production, could be completely reactivated in the presence of growth substrates within 5 h after the removal of propylene oxide so long as the propylene oxide production rate was below 150 nmol min-1 [mg dry weight cells]-1. Reactivation under these conditions was detectable within 30 min of propylene oxide removal. On the other hand, cells inactivated by propylene oxide production rates in excess of 150 nmol min-1 [mg dry weight]-1 did not begin to recover activity within the 30 min period. Furthermore a lag period was observed before reactivation began which was dependent upon the initial production rate. Cultures possessing sMMO took twice as long to recover their activity compared with cells containing pMMO.
Reactivation of propylene oxide production could occur without growth, but the process required the presence of a carbon and energy source (methane or methanol), sulphur, nitrogen and oxygen, although copper (which is normally involved in pMMO activity) was not required. It was shown that de novo protein synthesis was required for reactivation of activity.
Production rates of 12 g 1-1 d-1 could be maintained for longer than three weeks in a single phase production process and rates up to 30 g 1-1 d-1 were achieved in a two stage process. Using Methylocystis parvus (OBBP) rates of up to 90 g 1-1 d-1 were attained over a one week period. 相似文献
Reactivation of propylene oxide production could occur without growth, but the process required the presence of a carbon and energy source (methane or methanol), sulphur, nitrogen and oxygen, although copper (which is normally involved in pMMO activity) was not required. It was shown that de novo protein synthesis was required for reactivation of activity.
Production rates of 12 g 1-1 d-1 could be maintained for longer than three weeks in a single phase production process and rates up to 30 g 1-1 d-1 were achieved in a two stage process. Using Methylocystis parvus (OBBP) rates of up to 90 g 1-1 d-1 were attained over a one week period. 相似文献
10.
The rates of propylene oxidation to propylene oxide by Methylococcus capsulatus (Bath) have been optimized in small shake flasks to establish the potential of this process for industrial application. It was shown that addition of the electron donors methanol, formaldehyde, formate or hydrogen stimulated the endogenous rate of propylene oxide formation 10 to 50 fold. Rates in excess of 500 nmol min-1 mg dry weight cells-1 have been obtained using methanol as the donor. These high rates could only be sustained for 3 to 4 min before loss of biocatalytic activity caused the rate of propylene oxide production to decline. 相似文献
11.
In order to distinguish between the regulatory effects of oxygen tension and light intensity on cytochrome c oxidase protein and enzymatic activity cells of Rhodobacter capsulatus were shifted from phototrophic (anaerobic, light) growth to aerobic-light, aerobic-dark and to anaerobic-dark conditions, respectively. During shift-experiments the formation of oxidase protein and regulation of oxidase activity was followed by immunological and enzymatic means. The results support the idea, that the formation of oxidase protein is regulated by oxygen tension and light intensity changes, whereas the regulation of oxidase activity seems only to be correlated to the oxygen tension. A DNA sequence involved in the oxygen-dependent regulation of cytochrome oxidase could be identified in the regulation-deficient oxidase mutant H41 of R. capsulatus. Immunological investigations of cytochrome c
2 from mutant H41 demonstrated at the same time the participation of the c
2-polypeptide in the regulation of cytochrome c oxidase.Abbreviations Bchl
bacteriochlorophyll
- CIE
crossed immuno-electrophoresis
- DMSO
dimethyl sulfoxide 相似文献
12.
Stephen H. Stanley Anthony O'L Richards Motoshi Suzuki Howard Dalton 《Biocatalysis and Biotransformation》1992,6(3):177-190
Methylococcus capsulatus (Bath) possesses methane monooxygenase (MMO) which catalyses the epoxidation of propylene to propylene oxide. MMO activity could be maintained in whole cells by storage in unagitated vessels for several days. However if these cells were agitated and aerated in the absence of a carbon and energy source then 80% of the propylene-oxidizing activity Was lost within 24 h. It was shown that this loss of activity was due to the inability of the cells to provide energy to drive the oxidation process rather than the loss of MMO activity per se. If propylene oxide was added to these aerated cells then the rate of inactivation was increased and 50% of the activity was lost over a 10 min period. The addition of an exogenous energy source caused a doubling in the rate of inactivation. These marked increases in the rates of inactivation in the presence of propylene oxide were found to be caused by the loss of the methane monooxygenase activity per se rather than a further loss of the energy-producing systems. Cells actively producing propylene oxide from propylene, using methanol as an energy source, also lost their propylene oxide-producing capacity rapidly due to loss of the methane monooxygenase activity. The rate of inactivation under these circumstances was related to the rate of propylene oxide production from propylene rather than the level of this product in the culture supernatant. 相似文献
13.
Two conserved non-canonical histidines are essential for activity of the cbb
3-type oxidase in Rhodobacter capsulatus 总被引:1,自引:0,他引:1
Cytochrome cbb
3 oxidase, a member of the heme–copper oxidase superfamily, catalyses the reduction of oxygen to water and generates a proton
gradient. Cytochrome c oxidases are characterized by a catalytic subunit (subunit I) containing two hemes and one copper ion ligated by six invariant
histidine residues, which are diagnostic of heme–copper oxidases in all type of the heme–copper oxidase superfamily. Alignments
of the amino acid sequences of subunit I (FixN or CcoN) of the cbb
3-type oxidases show that catalytic subunit also contains six non-canonical histidine residues that are conserved in all CcoN
subunits of the cbb
3 oxidase, but not the catalytic subunits of other members of heme–copper oxidases superfamily. The function of these six CcoN-specific
conserved histidines of cbb
3-type oxidase in R. capsulatus is unknown. To analyze the contribution of the two invariant histidines of CcoN, H300 and H394, in activity and assembly
of the Rhodobacter capsulatus
cbb
3-type oxidase, they were substituted for valine and alanine, respectively by site-directed mutagenesis. H300V and H394A mutations
were analyzed with respect to their activity and assembly. It was found that H394A mutation led to a defect in the assembly
of both CcoP and CcoO in the membrane, which results in almost complete loss of activity and that although the H300V mutant
is normally assembled in the membrane and retain their stability, its catalytic activity is significantly reduced when compared
with wild-type oxidase. 相似文献
14.
The use of acetylene as a convenient assay substrate for nitrogenase in methane oxidising bacteria is complicated by the observation that it is a potent inhibitor of the methane monooxygenase enzyme in both whole cells and cell-free extracts. If the cells were provided with alternative oxidisable carbon substrates other than methane then nitrogen fixing cells would reduce acetylene to ethylene. Hydrogen gas also served as an oxidisable substrate in the assay. Nitrous oxide, which is reduced by nitrogenase to N2 and H2O, was not an inhibitor of methane monooxygenase function and could be used as a convenient assay substrate for nitrogenase. Reduction of both substrates by whole cells showed similar response to oxygen in the assay system and in this respect Methylococcus resembles other free living nitrogen fixing aerobes. 相似文献
15.
Inhibition studies of methane mono-oxygenase activity in whole cell suspensions of Methylococcus capsulatus (Texas) and M. capsulatus (Bath) were performed and the results compared. The inhibition pattern for M. capsulatus (Bath) was not only substantially different from the pattern obtained with M. capsulatus (Texas) but also very limited in the number of potent inhibitors specific for methane oxidation. To confirm the whole cell results of M. capsulatus (Bath) similar experiments were done using cell-free extracts. It was found that only acetylene (100% inhibition) and 8-hydroxyquinoline (71%) significantly inhibited methane oxidation, verifying the restricted inhibition pattern found with the whole cell suspensions. Eight acetylenic compounds were tested for specific inhibition of methane oxidation by whole cells and cell-free extracts of M. capsulatus (Bath). Only two compounds (acetylene and propyne) gave 100% inhibition in both cases with three other compounds (but-1-yne, but-2-yne and propyn-1-ol) giving weaker inhibitions. The inhibition pattern of methane oxidation by whole cell suspensions and cell-free extracts of M. capsulatus (Bath) is discussed and reasons for the prominent results are suggested. 相似文献
16.
Ishikawa R Ishido Y Tachikawa A Kawasaki H Matsuzawa H Wakagi T 《Archives of microbiology》2002,179(1):42-49
Aeropyrum pernix K1 is a strictly aerobic and hyperthermophilic archaeon that thrives even at 100 degrees C. The archaeon is quite interesting with respect to the evolution of aerobic electron transport systems and the thermal stability of the respiratory components. An isolated membrane fraction was found to oxidize bovine cytochrome c.The activity was solubilized in the presence of detergents and separated into two fractions by successive chromatography. Two cytochrome oxidases, designated as CO-1 and CO-2, were further purified. CO-1 was a ba(3)-type cytochrome containing at least two subunits. Chemically digested fragments of CO-1 revealed a peptide with a sequence identical to a part of a putative cytochrome oxidase subunit I encoded by the gene ape1623. CO-2, an aa(3)-type cytochrome, was present in lower amounts than CO-1 and was immunologically identified as a product of aoxABC gene (DDBJ accession no. AB020482). Both cytochromes reacted with carbon monoxide. The apparent K(m) values of CO-1 and CO-2 for oxygen were 5.5 and 32 micro M, respectively, at 25 degrees C. The terminal oxidases CO-1 and CO-2 phylogenetically correspond to the SoxB and SoxM branches, respectively, of the heme-copper oxidase tree. 相似文献
17.
Stokke R Madern D Fedøy AE Karlsen S Birkeland NK Steen IH 《Archives of microbiology》2007,187(5):361-370
The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55–60°C and an apparent midpoint melting temperature (T
m) of 70°C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized. Based on a structural alignment of McIDH and homotetrameric homoisocitrate dehydrogenase (HDH) from Thermus thermophilus (TtHDH), we identified the clasp-like domain of McIDH as a likely site for tetramerization. McIDH showed moreover, higher sequence identity (48%) to TtHDH than to previously characterized IDHs. Putative NAD+-IDHs with high sequence identity (48–57%) to McIDH were however identified in a variety of bacteria showing that NAD+-dependent IDHs are indeed widespread within the domain, Bacteria. Phylogenetic analysis including these new sequences revealed
a close relationship with eukaryal allosterically regulated NAD+-IDH and the subfamily III of IDH was redefined to include bacterial NAD+- and NADP+-dependent IDHs. This apparent relationship suggests that the mitochondrial genes encoding NAD+-IDH are derived from the McIDH-like IDHs. 相似文献
18.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2242-2247
Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa 3-type cytochrome c oxidase. The confirmed molecular weights of the α-subunit (52.5 kDa), the β-subunit (25 kDa), and the γ-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the γ-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa 3-type cytochrome c oxidase. This is the first report to indicate that aa 3-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans. 相似文献
19.
Lipowski G Liebl U Guigliarelli B Nitschke W Schoepp-Cothenet B 《FEBS letters》2006,580(25):5988-5992
The EPR spectral parameters of aa(3) oxidase and cyt c(552) from Paracoccus denitrificans were studied in purified oxidase and enriched cyt c(552). The orientation of the g-tensors of hemes a and c(552) were determined on partially ordered membranes, enriched cyt c(552) and a c(552):aa(3) subcomplex. The known correlation of g-tensor to molecular axes in histidine/methionine ligated hemes permits us to position cyt c(552) with respect to the parent membrane. Taken together with previous data on the interaction surface between aa(3) oxidase and cyt c(552), these results allow us to arrive at a single conformation for the c(552):aa(3) electron transfer complex. 相似文献
20.
Periplasmic extract from Desulfovibrio desulfuricans (NCIMB 8372) was found to contain two different c-type cytochromes. One is tetraheme cytochrome c3 and the other is monoheme cytochrome c553. Cytochrome c3 could be purified by a procedure involving only one chromatographic step, whereas cytochrome c553 required several such steps. Cytochrome c3 was found to have a relative molecular mass of 14300 and an isoionic point higher than 9. Analysis of the redox potentials indicated one heme at -260 mV and three hemes around -330 mV. Cytochrome c553 had a relative molecular mass of 7200, an isoionic point higher than 9 and a redox potential of 0 mV. 相似文献