共查询到20条相似文献,搜索用时 16 毫秒
1.
Gabriele Alfano Giuseppe Lustrato Giuseppe Lima Domenico Vitullo Giancarlo Ranalli 《Biological Control》2011,58(3):199-207
Despite its proven agronomic value, the plant disease suppressive effect of composts from olive waste has not been adequately investigated. In the present study, the disease suppressive potential of two olive waste (OW) composts against soil-borne plant pathogens was investigated. Both OW composts showed sizeable, active microbial populations, which were able to grow actively on chitin and cellulose. In plate inhibition trials, OW compost water extracts (CWEs) exerted a significant inhibitory effect on the growth of the pathogens Fusarium oxysporum f.sp. lycopersici (Fol), Pythium ultimum, Phytophtora infestans, Sclerotina sclerotiorum and Verticillium dahliae; and in pot experiments, the OW composts significantly reduced P. ultimum damping-off and Fol wilt diseases on tomato seedlings. The disease suppressive effect of OW composts seems to be due to the combined effects of suppression phenomena caused by the presence of microorganisms competing for both nutrients and space as well as by the activity of specific antagonistic microorganisms. 相似文献
2.
Georgios Zervakis Panayiotis Yiatras Constantinos Balis 《International biodeterioration & biodegradation》1996,38(3-4)
The biological remediation of olive oil mill wastes has been attempted several times in the past through the use of different types of microbes. Among them, a relatively large array of fungi were studied for neutralizing the heavy pollutant effects and/or for converting these wastes into new value-added products. The present investigation was aiming at examining whether olive oil mill wastes could be exploited for the cultivation of mushrooms of the genus Pleurotus. At a preliminary stage, two Pleurotus species, i.e. P. eryngii and P. pulmonarius, were tested for their ability to colonize an olive press-cake (OPC) substrate supplemented with various dilutions of raw olive mill wastewater (OWW). Some important cultural characters related to mushroom production (earliness, yield, biological efficiencies and quality of basidiomata) were estimated. The outcome revealed different cultural responses for each Pleurotus species examined; the P. pulmonarius strain showed better earliness values and P. eryngii, although it was a slow growing fungus, produced basidiomata in high yields and of a very good quality. On the other hand, the OPC substrate supplemented with low concentrations of OWW (12.5% v/w) behaved satisfactorily as regards the fungal colonization rates and mushroom yield, but when the addition of higher rates of raw, untreated OWW (75–100% v/w) was attempted then the Pleurotus strains were completely unable to grow. The optimal concentration of OWW for Pleurotus mycelial growth was assessed through measurements of the biomass produced in liquid nutrient media and was found to lie within the 25–50% range, depending on the Pleurotus species and on the properties of the substrates examined. Furthermore, the phytotoxic effects that the spent liquid medium possessed were examined in comparison with the phytotoxicity of the raw liquid waste. The prospects of exploiting olive oil mills wastes for mushroom cultivation is discussed. 相似文献
3.
F. Flouri D. Sotirchos S. Ioannidou C. Balis 《International biodeterioration & biodegradation》1996,38(3-4)
The removal of colour from olive mill wastewaters (OMW) using aluminium sulphate [Al2(SO4)3·18H2O], lime (CaO) and hydrogen peroxide (H2O2) was investigated, along with the decolorizing effect of sixteen strains of Pleurotus. In general terms all chemical substances exerted a clear decolorizing effect, yet the most effective was hydrogen peroxide, followed by lime and alumina. The tests with Pleurotus isolates were carried out on plates using different concentrations (25%, 50%, 75%, 100%) of sterilized OMW solidified with 1.5% agar. For all strains tested, decolorization proceeded more slowly than radial growth. Among the six Pleurotus species P. cornucopiae (ATCC 38547) and P. ostreatus (ATCC 34675) were the most efficient. 相似文献
4.
Effects of olive mill wastewater addition in composting of agroindustrial and urban wastes 总被引:1,自引:0,他引:1
In order to study the suitability of olive mill wastewater (OMW) for composting, thisliquid waste was added to two different mixtures of agroindustrial and urban wastesand the composting process was compared with two other piles of similar composition,but without OMW. These four piles were studied in a pilot plant using the Rutgers staticpile system. The addition of OMW produced a greater proportion of degradable organic matter or a higher degradation rate, higher electrical conductivity values, greater losses of total N and lower nitrification than in piles without OMW. Its addition also restricted the increase of the cation exchange capacity and provoked the appearance of phytotoxicity or a longer persistence of phytotoxicity. However, in general, all the composts showed increases in the cation exchange capacity, the percentage of humic acid-like carbon, the polymerisation ratio of these humic substances (which revealed that the organic matter had been humified during composting) and the germination index, the latter indicating the reduction of phytotoxicity during the process. 相似文献
5.
Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes 总被引:9,自引:0,他引:9
The use of maize straw (MS) or cotton waste (CW) as bulking agents in the composting of olive mill wastewater (OMW) sludge was compared by studying the organic matter (OM) mineralisation and humification processes during composting and the characteristics of the end products. Both composts were prepared in a pilot-plant using the Rutgers static-pile system. The use of CW instead of MS to compost OMW sludge extended both the thermophilic and bio-oxidative phases of the process, with higher degradation of polymers (mainly lignin and cellulose), a greater formation of nitrates, higher total nitrogen losses and a lower biological nitrogen fixation. The CW produced a compost with a more stabilised OM and more highly polymerised humic-like substances. In the pile with CW and OMW sludge, OM losses followed a first-order kinetic equation, due to OM degradation being greater at the beginning of the composting and remaining almost constant until the end of the process. However, in the pile with MS and OMW sludge this parameter followed a zero-order kinetic equation, since OM degraded throughout the process. The germination index indicated the reduction of phytotoxicity during composting. 相似文献
6.
Comparison between UV spectroscopy and Nirs to assess humification process during sewage sludge and green wastes co-composting 总被引:7,自引:0,他引:7
The humification of organic matter during composting was studied by the quantification and monitoring of the evolution of humic substances (Humic Acid-HA and Fulvic Acid-FA) by UV spectra deconvolution (UVSD) and near-infrared reflectance spectroscopy (NIRS) methods. The final aim of this work was to compare UVSD to NIRS method, already applied on the same compost samples in previous studies. Finally, UVSD predictions were good for HA and HA/FA (r2 of 0.828 and 0.531) but very bad for FA (r2 of 0.092). In contrary, all NIRS correlations were accurate and significant with r2 of 0.817, 0.806 and 0.864 for HA, FA and HA/FA ratio respectively. From these results, HA/FA ratio being a well-used index of compost maturity, UVSD and NIRS represent two invaluable tools for the monitoring of the composting process. However, we can note that NIRS predictions were more accurate than UVSD calibrations. 相似文献
7.
Organic matter humification in olive oil mill wastewater by abiotic catalysis with manganese(IV) oxide 总被引:3,自引:0,他引:3
The chemical changes occurring in an olive oil mill wastewater (OMW) sample digested catalytically with MnO(2) for 30 and 60 days were evaluated comparatively with those occurring in the same OMW left standing for the same time in an open-air lagoon. Both treatments increased the pH and electrical conductivity and decreased the contents of dry matter, total organic C and total N, and C/N ratio of OMW. The humic acid (HA)-like fraction isolated from the fresh OMW was characterized by a marked aliphatic character, small O and acidic functional group contents, marked presence of proteinaceous materials, partially modified lignin moieties and polysaccharides-like structures, extended molecular heterogeneity, and small degrees of aromatic ring polycondensation, polymerization and humification. With increasing the time of either lagooning or catalytic digestion, a loss of aliphatic materials and an increase of extraction yield, oxygenation, acidic functional groups, carbohydrates and aromaticity occurred in the HA-like fractions. The more evident changes measured for the HA-like fractions from catalytically-digested OMW, with respect to those from lagooned OMW, indicated that MnO(2) was able to catalyze organic matter humification in OMW. 相似文献
8.
Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts. 相似文献
9.
Monika Jakubus 《Chemical Speciation and Bioavailability》2016,28(1-4):189-198
Sewage sludge derived from municipal sewage treatment plants is an important source of macronutrients, micronutrients and organic matter. For this reason composting of sewage sludge, along with combustion and co-combustion, is a new management priority in Poland. In this study six composts of different origin and composition were evaluated in terms of their abundance in phosphorus, because it is an essential nutrient for all living organisms. Analyses were conducted on the samples at the initial and at the maturation phase of composting. The bioavailability of phosphorus was estimated on the basis of amounts of the nutrient in isolated fractions using the sequential extraction method. First of all quantitative changes of the total nutrient content and its amounts in separated fractions were dependent on the mixture composition. Irrespective of compost type, 34.5–75.0% of the total amounts of phosphorus were found in hardly available combinations (Fr. III), while available phosphorus forms (Fr. I) accounted for only 6.6–21.6%. As a result of composting together different organic wastes an increase was observed both in the total content and the amounts of this nutrient in separated fractions. This phenomenon was observed particularly in composts with smaller levels of sewage sludge (30–40%), characterised by rapid organic matter decomposition, which was indicated by higher bioavailable amounts of phosphorus. Under such conditions the content of P ranged between 3.68 and 7.4 g kg?1. In comparison to the labile pool of P obtained for matured composts C5 and C6 (65 and 75% of sewage sludge in their composition) amounting to 2.45–3.0 g kg?1 the above values were considerable. Bioavailable phosphorus contents potentially introduced to soil with composts doses calculated at 170 kg total N/ha/yr ranged from 69.8 to 80.2 kg for compost with the lowest share of sewage sludge and from 11.2 to 20.7 kg for compost with the highest share of sewage sludge. 相似文献
10.
Malika Mansour–Benamar Jean-Michel Savoie Louis Chavant 《Comptes rendus biologies》2013,336(8):407-415
Olive oil industry generates huge quantities of solid olive mill wastes (SOMW), causing environmental damage. Cultivation of edible mushrooms, such as Pleurotus ostreatus is a valuable approach for SOMW valorization. A local strain mycelium (Tizi-Ouzou, Algeria) of P. ostreatus (LPO) was isolated from castor oil plants. Oyster mushroom spawn, produced on barley grains, was used to inoculate wet SOMW, steamed in a traditional steamer during 45 min. The mycelium growth rate on SOMW was first estimated in Petri dish by measuring the surface colonized by the mycelium. The fruit body yields were estimated on culture bags containing 2 kg each of SOMW inoculated at 7% (w/w). The local strain potential was compared with that of a commercial one. Both strains produced high-quality mushrooms, but with low yields. The supplementation of the SOMW with wheat straw at the rate of 10% and 2% of CaCO3 had significantly enhanced the productivity of the two strains, multiplying it by 3.2 for LPO and by 2.6 for CPO. 相似文献
11.
Photochemical UV/TiO2 treatment of olive mill wastewater (OMW) 总被引:1,自引:0,他引:1
El Hajjouji H Barje F Pinelli E Bailly JR Richard C Winterton P Revel JC Hafidi M 《Bioresource technology》2008,99(15):7264-7269
Olive mill wastewater (OMW) was treated by photocatalysis using TiO2 under UV irradiation on the laboratory scale. The chemical oxygen demand, the coloration at 330nm, and the level of phenols all showed decreases which, after a 24-h treatment, reached 22%, 57% and 94%, respectively. The differences between these three values indicate the persistence of colourless, non-phenolic compounds. Application of the novel Fictitious Atomic-Group Separation method showed an increase in carbon oxidation state and confirmed that the attack primarily concerns, aromatic moieties. A fine spectroscopic study revealed the occurrence of three successive phases during the degradation process, thought to correspond to three different categories of molecules in the OMW and the presence of pectin compounds. 相似文献
12.
Fulya Ergun Ergül Sayit Sargın Gaye Öngen Fazilet Vardar Sukan 《International biodeterioration & biodegradation》2009,63(1):1-6
Olive mill wastewater (OMW) is an effluent of the olive oil extraction process. The large volumes involved, along with the high phenolic content and chemical oxygen demand, cause major environmental problems. The presence of phenolics limits the effectiveness of aerobic or anaerobic treatment of this wastewater. In most of the studies performed on OMW, the concentration of phenolics is reduced by diluting the OMW prior to biological treatment, which leads to an increase in waste volume. Therefore, the aim of this work was to investigate the possibility of reducing the phenolic content without dilution and without any addition of nutrients or pretreatment by using the white-rot fungi Trametes versicolor FPRL 28A INI. Through an adaptation process, the fungus was able to remove 78% of total phenolics in shake flask experiments and 39% in static culture using undiluted OMW medium. In continuously stirred tank reactor (CSTR) conditions, 70% of total phenolics removal was achieved. Analysis with GC–MS showed that all simple phenolics disappeared from the medium after the 8th day of cultivation at an 0.25 vvm aeration rate. The maximum activities of phenol degrading enzymes laccase and manganese peroxidase (MnP) obtained under these conditions were 762.14 ± 42.11 and 97.80 ± 8.11 U l?1 respectively. 相似文献
13.
Enhancing the co-composting of olive mill wastes and sewage sludge by the addition of an industrial waste 总被引:3,自引:1,他引:3
In this work, the effect of incorporating an acidic ferrous sulphate waste (SF) over co-composting process of sewage sludge and olive mill solid wastes in a 1:2 v/v wet basis was investigated. The SF used was an industrial by-product of titanium oxide synthesis and its addition resulted in a chemical stabilisation of the wastes at low pH. The optimum dose of SF to enhance the composting of the studied biowastes was a 20% v/v (wet basis) and the best moment for the addition turned out to be whenever the composting piles had achieved the thermophilic range. The addition of SF over the composting process made possible a faster stabilisation, increasing the composting rate from 0.033 to 0.13 d(-1), and leading to a Fe and S rich compost. All composts obtained fulfilled the limits determined by current European and Spanish regulations and presented better characteristics for its use as soil amendment and organic fertilizer than the traditional composts without SF. The optimum dose of compost containing SF was determined through agronomic tests being its value about 18 Ton ha(-1). 相似文献
14.
Luís Abrunhosa Felisbela Oliveira Danielle Dantas Cristiana Gonçalves Isabel Belo 《Bioprocess and biosystems engineering》2013,36(3):285-291
Olive mill wastewater (OMW) characteristics make it a suitable resource to be used as a microbial culture media to produce value-added compounds, such as enzymes. In this work, the ability of the novel species Aspergillus ibericus to discolor OMW and produce lipase was studied. An initial screening on plates containing an OMW-based agar medium and an emulsified olive oil/rhodamine-B agar medium was employed to select the strain A. ibericus MUM 03.49. Then, experiments in conical flasks with liquid OMW-based media showed that the fungus could growth on undiluted OMW, with a chemical oxygen demand (COD) of 97 ± 2 g/L, and to produce up to 2,927 ± 54 U/L of lipase. When pure OMW was used in the media, the maximum COD and color reduction achieved were 45 and 97 %, respectively. When OMW diluted to 10 % was used, A. ibericus was able to reduce phenolic and aromatic compounds by 37 and 39 %, respectively. Additionally, lipase production was found to be promoted by the addition of mineral nutrients. When the fermentations were scaled up to a 2-L bioreactor, A. ibericus produced up to 8,319 ± 33 U/L of lipase, and the maximum COD and color reduction were 57 and 24 %, respectively. 相似文献
15.
A. Ramos-Cormenzana B. Jurez-Jimnez M. P. Garcia-Pareja 《International biodeterioration & biodegradation》1996,38(3-4)
Olive oil extraction produces a great volume of residue. These olive mill wastes are known as alpechin. This wastewater is a powerful pollutant, resistant to degradation and presents a severe environmental problem related to its high organic content made up largely of simple phenolic compounds, that have been described as being both antimicrobial and phytotoxic. This paper reviews briefly the antimicrobial activity of olive mill wastewaters and provides evidence to show the potential of micro organisms (Bacillus pumilus) to reduce the phenol content of alpechin, and also that biotransformation depends on the dilution (v/v) of the alpechin. Furthermore, we sought to provide a real evaluation of the extent of alpechin biotransformation. This was achieved by means of an internal reference, i.e. in relative terms, the phenol content resulting from the biotransformation process. The phenol content was measured using HPLC techniques, and results were obtained showing that the bacterium had most effect in reducing the phenol content of alpechin at concentrations of between 40 and 100%. It was also observed that at concentrations of 80%, in addition to a slight reduction in total phenols, new phenolic compounds, not present in the original alpechin, were generated. 相似文献
16.
Amaral C Lucas MS Coutinho J Crespí AL do Rosário Anjos M Pais C 《Bioresource technology》2008,99(15):7215-7223
The microbiological and physicochemical characterization of samples from the different wastewaters generated during oil extraction in a continuous olive mill was performed. The main aim was to determine which of the physicochemical parameters were the best fitted to correctly characterize these residual waters. High correlations were obtained for COD, DOC, K, P and N contents with the sampling points, allowing the distinction of olive washing waters (OWW) from olive centrifuge waters (OCW) and olive mill wastewaters (OMW). These parameters were sufficient for a rapid and less costly chemical characterization of these waters. Phenols and oil and grease contents, together with low pH and dissolved oxygen contents, and high organic loads, were the most toxic for microbial populations. Microbial characterization showed that fungi were well adapted to these stressing environmental characteristics and the reuse of OMW after aerobic treatment with microbial species isolated from the effluent is considered. 相似文献
17.
M. Ahmadi F. Vahabzadeh B. Bonakdarpour M. Mehranian E. Mofarrah 《World journal of microbiology & biotechnology》2006,22(2):119-127
Summary Olive oil mill wastewater (OMW) has a high organic load, and this is a serious concern of the olive industry. Conventional biological wastewater treatments, despite their simplicity and suitable performance are ineffective for OMW treatment since phenolics possess antimicrobial activity. In order to carry out a proper treatment of OMW, use of a microorganism able to degrade the phenolics is thus necessary. In this study the ability of Phanerochaete chrysosporium to degrade the phenolic compounds of OMW and to decrease the chemical oxygen demand (COD) using cells immobilized on loofah was examined. The basal mineral salt solution along with glucose, ammonium sulfate and yeast extract was used to dilute the OMW appropriately. The fungus did not grow on the concentrated OMW. The extent of removal in this bio-treatment, of total phenols (TP) and the COD were 90 and 50%, respectively, while the color and aromaticity decreased by 60 and 95%, respectively. The kinetic behavior of the loofah-immobilized fungus was found to follow the Monod equation. The maximum growth rate μmax was 0.045 h−1 while the Monod constant based on the consumed TP and COD were (mg/l) 370 and 6900, respectively. 相似文献
18.
Castellani Francesco Esposito Alessandro Geldermann Jutta Altieri Roberto 《The International Journal of Life Cycle Assessment》2019,24(2):281-296
The International Journal of Life Cycle Assessment - In Italy, composting olive mill waste has become a common practice, since it mitigates the environmental problems associated with spreading the... 相似文献
19.
The olive oil production process by the two-phase centrifugal system generates a waste named “alperujo”, which has a high percentage of water (65%) and contains phenolic compounds. These compounds are phytotoxic and pollute the soil and waterways, hindering the disposal of the alperujo. However, a diverse microbiota with biotechnological applications, such as the carotene-producing bacteria Microbacterium sp., was isolated from these wastes. The aim of this work was to evaluate the ability of an aqueous extract from alperujo (AE) to sustain the growth and carotene production of Microbacterium sp. in an attempt to valorize this waste. An inverse relationship between Microbacterium sp. growth and carotene production and AE concentration was observed. The bacterial growth was accompanied by a decrease in nitrogen, total sugar and glucose levels. In addition, total polyphenol content decreased, whereas pH of the AE increased. These results demonstrate that AE can be used as a substrate for carotene production, being an alternative strategy for alperujo valorization. 相似文献
20.
Michael MichailidesGerasimos Christou Christos S. AkratosAthanasia G. Tekerlekopoulou Dimitrios V. Vayenas 《International biodeterioration & biodegradation》2011,65(3):560-564
The composting of olive leaves and olive pomace from a three-phase olive mill was tested as a method for solid waste reuse. The process was carried out using a compost windrow and mixing olive leaves and pomace at a ratio of 1:2. Compost was retained in the windrow for 60 days during which thermophilic temperatures developed for the first 40 days. The compost was then placed into a closed area to mature for another 60 days. The final product proved to be high quality amendment with C/N 27.1 and high nutrient concentrations (N, 1.79%; P, 0.17%; K, 4.97%; Na, 2.8%). Mature compost presented the highest germination index (198%) reported to date, as the germination index in the majority of previous studies is under 80%. Furthermore, tests revealed that addition of 31.5 tons of compost per ha, could increase lettuce yield by 145%. 相似文献