首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The intron-containing proline tRNAUGG genes in Saccharomyces cerevisiae can mutate to suppress +1 frameshift mutations in proline codons via a G to U base substitution mutation at position 39. The mutation alters the 3' splice junction and disrupts the bottom base-pair of the anticodon stem which presumably allows the tRNA to read a four-base codon. In order to understand the mechanism of suppression and to study the splicing of suppressor pre-tRNA, we determined the sequences of the mature wild-type and mutant suppressor gene products in vivo and analyzed splicing of the corresponding pre-tRNAs in vitro. We show that a novel tRNA isolated from suppressor strains is the product of frameshift suppressor genes. Sequence analysis indicated that suppressor pre-tRNA is spliced at the same sites as wild-type pre-tRNA. The tRNA therefore contains a four-base anticodon stem and nine-base anticodon loop. Analysis of suppressor pre-tRNA in vitro revealed that endonuclease cleavage at the 3' splice junction occurred with reduced efficiency compared to wild-type. In addition, reduced accumulation of mature suppressor tRNA was observed in a combined cleavage and ligation reaction. These results suggest that cleavage at the 3' splice junction is inefficient but not abolished. The novel tRNA from suppressor strains was shown to be the functional agent of suppression by deleting the intron from a suppressor gene. The tRNA produced in vivo from this gene is identical to that of the product of an intron+ gene, indicating that the intron is not required for proper base modification. The product of the intron- gene is a more efficient suppressor than the product of an intron+ gene. One interpretation of this result is that inefficient splicing in vivo may be limiting the steady-state level of mature suppressor tRNA.  相似文献   

3.
We have isolated and sequenced the minor species of tRNA(Ile) from Saccharomyces cerevisiae. This tRNA contains two unusual pseudouridines (psi s) in the first and third positions of the anticodon. As shown earlier by others, this tRNA derives from two genes having an identical 60 nt intron. We used in vitro procedures to study the structural requirements for the conversion of the anticodon uridines to psi 34 and psi 36. We show here that psi 34/psi 36 modifications require the presence of the pre-tRNA(Ile) intron but are not dependent upon the particular base at any single position of the anticodon. The conversion of U34 to psi 34 occurs independently from psi 36 synthesis and vice versa. However, psi 34 is not formed when the middle and the third anticodon bases of pre-tRNA(Ile) are both substituted to yield ochre anticodon UUA. This ochre pre-tRNA(Ile) mutant has the central anticodon uridine modified to psi 35 as is the case for S.cerevisiae SUP6 tyrosine-inserting ochre suppressor tRNA. In contrast, neither the first nor the third anticodon pseudouridine is formed, when the ochre (UUA) anticodon in the pre-tRNA(Tyr) is substituted with the isoleucine UAU anticodon. A synthetic mini-substrate consisting of the anticodon stem and loop and the wild-type intron of pre-tRNA(Ile) is sufficient to fully modify the anticodon U34 and U36 into psi s. This is the first example of the tRNA intron sequence, rather than the whole tRNA or pre-tRNA domain, being the main determinant of nucleoside modification.  相似文献   

4.
Archaeal pre-tRNAs are characterized by the presence of the bulge-helix-bulge (BHB) structure in the intron stem-and-loop region. A chimeric pre-tRNA was constructed bearing an intron of the archaeal type and the mature domain of the Saccharomyces cerevisiae suppressor SUP4 tRNA(Tyr). This pre-tRNA(ArchEuka) is correctly cleaved in several cell-free extracts and by purified splicing endonucleases. It is also cleaved and ligated in S. cerevisiae cells, providing efficient suppression of nonsense mutations in various genes.  相似文献   

5.
6.
7.
We identified and partially purified a phosphatase from crude extracts of Saccharomyces cerevisiae cells that can catalyze the last step of tRNA splicing in vitro. This phosphatase can remove the 2'-phosphate left over at the splice junction after endonuclease has removed the intron and ligase has joined together the two half-molecules. We suggest that this phosphatase is responsible for the completion of tRNA splicing in vivo, based primarily on its specificity for the 2'-phosphate of spliced tRNA and on the resistance of the splice junction 2'-phosphate to a nonspecific phosphatase. Removal of the splice junction 2'-phosphate from the residue adjacent to the anticodon is likely necessary for efficient expression of spliced tRNA. The phosphatase appears to be composed of at least two components which, together with endonuclease and ligase, can be used to reconstitute the entire tRNA-splicing reaction.  相似文献   

8.
N Stange  H Beier 《The EMBO journal》1987,6(9):2811-2818
An intron-containing tobacco tRNA(Tyr) precursor synthesized in a HeLa cell nuclear extract has been used to develop a cell-free processing and splicing system from wheat germ. Removal of 5' and 3' flanking sequences, accurate excision of the intervening sequence, ligation of the resulting tRNA halves, addition of the 3'-terminal CCA sequence and modification of seven nucleosides were achieved in appropriate wheat germ S23 and S100 extracts. The maturation of pre-tRNA(Tyr) in these extracts resembles the pathway observed in vivo for tRNA biosynthesis in Xenopus oocytes and yeast in that processing of the flanks precedes intron excision. Most of the modified nucleosides (m2(2) G, psi 35, psi 55, m7G and m1A) are introduced into the intron-containing pre-tRNA with mature ends, whereas two others (m1G and psi 39) are only found in the mature tRNA(Tyr). Processing and splicing proceed very efficiently in the wheat germ extracts, leading to complete maturation of 5' and 3' ends followed by about 65% conversion to mature tRNA(Tyr) under our standard conditions. The activity of the wheat germ endonuclease is stimulated 3-fold by the non-ionic detergent Triton X-100. All previous attempts to demonstrate the presence of a splicing endonuclease in wheat germ had failed (Gegenheimer et al., 1983). Hence, this is the first cell-free plant extract which supports pre-tRNA processing and splicing in vitro.  相似文献   

9.
N K Tanner  M M Hanna  J Abelson 《Biochemistry》1988,27(24):8852-8861
Yeast tRNA ligase, from Saccharomyces cerevisiae, is one of the protein components that is involved in the splicing reaction of intron-containing yeast precursor tRNAs. It is an unusual protein because it has three distinct catalytic activities. It functions as a polynucleotide kinase, as a cyclic phosphodiesterase, and as an RNA ligase. We have studied the binding interactions between ligase and precursor tRNAs containing two photoreactive uridine analogues, 4-thiouridine and 5-bromouridine. When irradiated with long ultraviolet light, RNA containing these analogues can form specific covalent bonds with associated proteins. In this paper, we show that 4-thiouridine triphosphate and 5-bromouridine triphosphate were readily incorporated into a precursor tRNA(Phe) that was synthesized, in vitro, with bacteriophage T7 RNA polymerase. The analogue-containing precursor tRNAs were authentic substrates for the two splicing enzymes that were tested (endonuclease and ligase), and they formed specific covalent bonds with ligase when they were irradiated with long-wavelength ultraviolet light. We have determined the position of three major cross-links and one minor cross-link on precursor tRNA(Phe) that were located within the intron and near the 3' splice site. On the basis of these data, we present a model for the in vivo splicing reaction of yeast precursor tRNAs.  相似文献   

10.
Oligonucleotide-directed mutagenesis was used to generate amber, ochre and opal suppressors from cloned Arabidopsis and Nicotiana tRNA(Tyr) genes. The nonsense suppressor tRNA(Tyr) genes were efficiently transcribed in HeLa and yeast nuclear extracts, however, intron excision from all mutant pre-tRNAs(Tyr) was severely impaired in the homologous wheat germ extract as well as in the yeast in vitro splicing system. The change of one nucleotide in the anticodon of suppressor pre-tRNAs leads to a distortion of the potential intron-anticodon interaction. In order to demonstrate that this caused the reduced splicing efficiency, we created a point mutation in the intron of Arabidopsis tRNA(Tyr) which affected the interaction with the wild-type anticodon. As expected, the resulting pre-tRNA was also inefficiently spliced. Another mutation in the intron, which restored the base-pairing between the amber anticodon and the intron of pre-tRNA(Tyr), resulted in an excellent substrate for wheat germ splicing endonuclease. This type of amber suppressor tRNA(Tyr) gene which yields high levels of mature tRNA(Tyr) should be useful for studying suppression in higher plants.  相似文献   

11.
Saccharomyces cerevisiae glutamine tRNA(CAG) is encoded by an intronless, single-copy gene, SUP60. We have imposed a requirement for splicing in the biosynthesis of this tRNA by inserting a synthetic intron in the SUP60 gene. Genetic analysis demonstrated that the interrupted gene produces a functional, mature tRNA product in vivo.  相似文献   

12.
13.
14.
15.
We have examined the substrate requirements for efficient and accurate splicing of tRNA precursors in Saccharomyces cerevisiae. The effects of Schizosaccharomyces pombe tRNASer gene mutations on the two steps in splicing, intron excision and joining of tRNA halves, were determined independently by using partially purified splicing endonuclease and tRNA ligase from S. cerevisiae. Two mutations (G14 and A46) reduced the efficiency of excision and joining in parallel, whereas two others (U47:7 and C33) produced differential effects on these two steps; U47:7 affected primarily the excision reaction, and C33 had a greater impact on ligation. These data indicate that endonuclease and ligase recognize both common and unique features of their substrates. Another two mutations (Ai26 and A37:13) induced miscutting, although with converse effects on the two splice sites. Thus, the two cutting events appear to be independent. Finally, we suggest that splice sites may be determined largely through their position relative to sites within the tRNA-like domain of the precursors. Several of these important sites were identified, and others are proposed based on the data described here.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号