首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Sidera C  Parsons R  Austen B 《Proteomics》2005,5(6):1533-1543
Beta-amyloid is released into the brains of Alzheimer's patients, where it aggregates and causes damage to neurons. It is cleaved proteolytically from a large transmembrane glycoprotein amyloid precursor protein by a membrane-bound protease, known as beta-secretase identified previously as the acid protease, Asp-2. We have shown previously that beta-secretase is up-regulated by increased intracellular cholesterol, and down-regulated by cholesterol biosynthesis inhibition. Here we show using mass spectrometry that discrete changes in the glycosylation and palmitoylation of beta-secretase occur when cells expressing it are treated with statins.  相似文献   

2.
Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme   总被引:2,自引:0,他引:2  
The brains of Alzheimer's disease (AD) patients are morphologically characterized by neurofibrillar abnormalities and by parenchymal and cerebrovascular deposits of beta-amyloid peptides. The generation of beta-amyloid peptides by proteolytical processing of the amyloid precursor protein (APP) requires the enzymatic activity of the beta-site APP cleaving enzyme 1 (BACE1). The expression of this enzyme has been localized to the brain, in particular to neurons, indicating that neurons are the major source of beta-amyloid peptides in brain. Astrocytes, on the contrary, are known to be important for beta-amyloid clearance and degradation, for providing trophic support to neurons, and for forming a protective barrier between beta-amyloid deposits and neurons. However, under certain conditions related to chronic stress, the role of astrocytes may not be beneficial. Here we present evidence demonstrating that astrocytes are an alternative source of BACE1 and therefore may contribute to beta-amyloid plaque formation. While resting astroyctes in brain do not express BACE1 at detectable levels, cultured astrocytes display BACE1 promoter activity and express BACE1 mRNA and enzymatically active BACE1 protein. Additionally, in animal models of chronic gliosis and in brains of AD patients, there is BACE1 expression in reactive astrocytes. This would suggest that the mechanism for astrocyte activation plays a role in the development of AD and that therapeutic strategies that target astrocyte activation in brain may be beneficial for the treatment of AD. Also, there are differences in responses to chronic versus acute stress, suggesting that one consequence of chronic stress is an incremental shift to different phenotypic cellular states.  相似文献   

3.
The enzyme BACE (beta-site APP-cleaving enzyme) has recently been identified as the beta-secretase that cleaves the amyloid precursor protein (APP) to produce the N terminus of the Abeta peptide found in plaques in the brains of Alzheimer's disease patients. BACE is an aspartic protease similar to pepsin and renin. Comparative modeling of the three-dimensional structure of BACE in complex with its substrate shows that several residues confer specificity of the enzyme for APP. In particular, Arg296 forms a salt-bridge with the P1' Asp of the APP substrate, explaining the unusual preference of BACE among aspartic proteases for a P1' residue that is negatively charged. Several hydrophobic residues in the enzyme form a pocket for the P1 hydrophobic residue (Met in wild-type APP and Leu in APP with the "Swedish mutation" associated with early-onset of Alzheimer's disease). Inhibitors that can bind to the BACE active site may prove useful for drugs to treat and prevent Alzheimer's disease.  相似文献   

4.
5.
The amyloidogenic Abeta peptide is liberated from the amyloid precursor protein (APP) by two proteolytic activities, beta-secretase and gamma-secretase. Recently, a type I membrane protein termed BACE (beta-site APP cleaving enzyme) with characteristics of an aspartyl protease has been identified as the beta-secretase. We undertook a series of biochemical and morphological investigations designed to characterize the basic properties of this protein. Initial studies indicated that BACE undergoes N-linked glycosylation at three of four potential sites. Metabolic pulse-chase experiments revealed that after core glycosylation, BACE is rapidly and efficiently transported to the Golgi apparatus and distal secretory pathway. BACE was also found to be quite stable, being turned over with a t(12) of approximately 16 h. Retention of BACE in the endoplasmic reticulum by introduction of a C-terminal dilysine motif prevented complex carbohydrate processing and demonstrated that propeptide cleavage occurs after exit from this organelle. BACE exhibited intramolecular disulfide bonding but did not form oligomeric structures by standard SDS-polyacrylamide gel electrophoresis analysis and sedimented as a monomer in sucrose velocity gradients. Immunofluorescence studies showed a largely vesicular staining pattern for BACE that colocalized well with endosomal, but not lysosomal, markers. Measurable levels of BACE were also detected on the plasma membrane by both immunostaining and cell surface biotinylation, and cycling of the protein between the cell membrane and the endosomes was documented. A cytoplasmic dileucine motif was found to be necessary for normal targeting of BACE to the endosomal system and accumulation of the protein in this intracellular site.  相似文献   

6.
Beta-secretase inhibitors that lower brain beta-amyloid peptides (Abeta) are likely to be effective for treating Alzheimer's disease (AD). Irreversible epoxysuccinyl cysteine protease inhibitors are known to reduce brain Abeta and beta-secretase activity in the guinea pig model of human Abeta production. In this study, acetyl-L-leucyl-L-valyl-L-lysinal (Ac-LVK-CHO) is also shown to significantly reduce brain Abeta and beta-secretase activity and brain Abeta in the same model. Ac-LVK-CHO is structurally distinct from the epoxysuccinyl inhibitors and is a reversible cysteine protease inhibitor. The results suggest that cysteine protease inhibitors generally, and reversible cysteine protease inhibitors specifically, have potential for development as AD therapeutics.  相似文献   

7.
Platelet and erythrocyte membrane changes in Alzheimer's disease   总被引:2,自引:0,他引:2  
Previous reports have suggested that the physical properties of cell membranes and calcium homeostasis in both the central and peripheral nervous system are changed in Alzheimer's disease (AD). This study has examined the biophysical properties of erythrocyte and platelet membranes by measuring the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and possible related changes in lipid peroxidation. In addition, we have studied calcium homeostasis by measuring thrombin-stimulated changes in intraplatelet free calcium and Ca2(+)-ATPase activity in AD and healthy age and sex-matched controls. Our results show that there was no significant difference in the fluorescence anisotropy of DPH in erythrocyte membranes isolated from the three groups. There was also no significant difference in lipid peroxidation levels in erythrocytes and plasma of AD patients compared to controls. However, there was a significant reduction in the fluorescence anisotropy of DPH in platelet membranes from AD patients, compared with healthy controls. Recent evident suggests that the increase in platelet membrane fluidity results from alterations in internal membranes. We measured the specific activities of enzyme markers associated with intracellular and plasma membranes in platelets from AD patients and healthy controls. There was a significant reduction in the specific activity of antimycin A-insensitive NADH-cytochrome-c reductase (a specific marker for smooth endoplasmic reticulum (SER)), in AD patients compared to controls, but no change in the specific activity of bis(p-nitrophenyl)phosphate phosphodiesterase (a specific marker for plasma membrane). We have also shown that SER mediated [Ca2+] homeostasis is possibly impaired in AD platelets, i.e., the percentage of thrombin-stimulated increase in intraplatelet [Ca2+] above basal levels was significantly higher in AD compared to matched controls and there were significant reductions in the specific activities of Ca2+/Mg2(+)-ATPase and Ca2(+)-ATPase (but not Mg2(+)-ATPase) in AD platelets. Finally electron microscopic analysis of platelets showed that there was a significant increase in the incidence of abnormal membranes in AD patients compared to controls. The ultrastructural abnormalities seem to consist of proliferation of a system of trabeculated cisternae bounded by SER. These results suggest that both SER structure and function might be defected in AD platelets, which could explain the fluidity changes observed here.  相似文献   

8.
9.
Stockley JH  Ravid R  O'Neill C 《FEBS letters》2006,580(28-29):6550-6560
beta-Secretase is the rate limiting enzymatic activity in the production of amyloid-beta peptide, the primary component of senile plaque pathology in Alzheimer's disease (AD). This study performed the first comparative analysis of beta-secretase enzyme kinetics in AD and control brain tissue. Results found V(max) values for beta-secretase to be significantly increased, and K(m) values unchanged in AD temporal cortex compared to matched control temporal cortex. The increased V(max) in AD cases, did not correlate with levels of BACE1, and decreased BACE1 and BACE2 levels correlated with the severity of neurofibrillary pathology (I-VI), and synaptic loss in AD. These results indicate that increased V(max) for beta-secretase is a feature of AD pathogenesis and this increase does not correlate directly with levels of BACE1, the principal beta-secretase in brain.  相似文献   

10.
Beckman M  Holsinger RM  Small DH 《Biochemistry》2006,45(21):6703-6714
BACE1 is an aspartic protease that generates the N-terminus of the beta-amyloid protein (Alphabeta) from the beta-amyloid precursor protein (APP). BACE1 is a key target for Alzheimer drug development. However, little is known about the physiological regulation of the enzyme. Heparin can promote beta-secretase cleavage of APP in neuroblastoma cells. However, heparin has also been reported to directly inhibit BACE1 activity in vitro. To clarify the role of heparin in regulating BACE1, we examined the effect of heparin on the activity of recombinant human BACE1 (rBACE1) in vitro. Low concentrations (1 microg/mL) of heparin were found to stimulate rBACE1, increasing enzyme V(max) and decreasing the K(M). In contrast, higher concentrations of heparin (10 or 100 microg/mL) were inhibitory. Heparin affinity chromatography demonstrated that heparin interacted strongly with the zymogen form of rBACE1 and bound to a peptide homologous to the N-terminal pro sequence of BACE1. Mature (pro sequence cleaved) enzyme lacked the capacity to be stimulated by heparin, indicating that the pro domain was necessary for the stimulation by heparin. Furthermore, in the presence of stimulatory concentrations of heparin, there was an increase in autocatalytic cleavage of the protease domain and a subsequent loss of enzyme activity in vitro. Our results strongly suggest that heparin stimulates the partially active BACE1 zymogen, and we propose that the activation is mediated by high-affinity binding of heparin to the pro domain. Our study provides evidence that heparan sulfate proteoglycans could regulate the rate of Alphabeta production in vivo.  相似文献   

11.
Alzheimer's beta-secretase (BACE1) is a membrane-bound protease that cleaves the amyloid precursor protein (APP) in the trans-Golgi network, an initial step in the pathogenesis of Alzheimer's disease. Although BACE1 is distributed among various tissues including brain, its physiological substrate other than APP have not been identified. We have recently found that when BACE1 was overexpressed in COS cells together with alpha2,6-sialyltransferase (ST6Gal I), the secretion of ST6Gal I markedly increased, suggesting that BACE1 cleaves ST6Gal I as a physiological substrate. Thus BACE1 is the first identified protease that is responsible for the cleavage and secretion of glycosyltransferases.  相似文献   

12.
13.
Recent studies indicated that the formation of a major constituent of Alzheimer's disease (AD) senile plaques, called beta A4-peptide, does not result from normal processing of its precursor, amyloid precursor protein (APP). Since proteolytic cleavage of APP inside its beta A4 sequence was found to be part of APP processing the formation of the beta A4-peptide seems to be prevented under normal conditions. We considered whether in AD one of the endogenous proteinase inhibitors might interfere with APP processing. After we had recently found that cultured human neuronal cells synthesize the most potent of the known human proteinase inhibitors, alpha-2-macroglobulin (alpha 2M), upon stimulation with the inflammatory mediator interleukin-6 (IL-6) we now investigated whether alpha 2M and IL-6 could be detected in AD brains. Here we report that AD cortical senile plaques display strong alpha 2M and IL-6 immunoreactivity while no such immunoreactivity was found in age-matched control brains. Strong perinuclear alpha 2M immunoreactivity in hippocampal CA1 neurons of Alzheimer's disease brains indicates that neuronal cells are the site of alpha 2M synthesis in AD brains. We did not detect elevated IL-6 or alpha 2M levels in the cerebrospinal fluid of AD patients. Our data indicate that a sequence of immunological events which seem to be restricted to the local cortical environment is part of AD pathology.  相似文献   

14.
15.
Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. The toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.  相似文献   

16.
A considerable body of evidence indicates that the activity of glutamine synthetase is decreased in the cerebral cortices of brains affected by Alzheimer's disease. It is difficult to discern the reason for this decrease because it is not known whether the cellular distribution of glutamine synthetase is altered in Alzheimer's disease. Therefore the present study has used immunocytochemistry to compare the cellular distributions of glutamine synthetase in the inferior temporal cortices of six Alzheimer's diseased brains and six age-matched, non-demented brains. Double-label immunocytochemistry has been used to examine whether the distribution of cellular glutamine synthetase is influenced by the distribution of senile plaques. It was found that glutamine synthetase expression in astrocytes is diminished in Alzheimer's disease, particularly in the vicinity of senile plaques. The most striking finding of the present study was that glutamine synthetase was expressed in a subpopulation of pyramidal neurons in all six Alzheimer's diseased brains, whereas glutamine synthetase was not observed in any neurons from control brains. The changed expression of glutamine synthetase may be triggered by toxic agents in senile plaques, a reduced noradrenergic supply to the cerebral cortex, and increased brain ammonia levels. That such dramatic changes occur in the distribution of this critical, and normally stable enzyme, suggests that the glutamate-glutamine cycle is profoundly impaired in Alzheimer's disease. This is significant because impairments of the glutamate-glutamine cycle are known to cause alterations of mood and behaviour, disturbance of sleeping patterns, amnesia, confusion and reduced awareness. Since these behavioural changes are also seen in Alzheimer's disease, it is speculated that they might be attributable to the reduced expression of glutamine synthetase or to impairments of the glutamate-glutamine cycle.  相似文献   

17.
18.
19.
Tractography based on Diffusion Tensor Imaging (DTI) represents a valuable tool for investigating brain white matter (WM) microstructure, allowing the computation of damage-related diffusion parameters such as Fractional Anisotropy (FA) in specific WM tracts. This technique appears relevant in the study of pathologies in which brain disconnection plays a major role, such as, for instance, Alzheimer's Disease (AD). Previous DTI studies have reported inconsistent results in defining WM abnormalities in AD and in its prodromal stage (i.e., amnestic Mild Cognitive Impairment; aMCI), especially when investigating the corpus callosum (CC). A reason for these inconsistencies is the use of different processing techniques, which may strongly influence the results. The aim of the current study was to compare a novel atlas-based tractography approach, that sub-divides the CC in eight portions, with Tract-Based Spatial Statistics (TBSS) when used to detect specific patterns of CC FA in AD at different clinical stages. FA data were obtained from 76 subjects (37 with mild AD, 19 with aMCI and 20 elderly healthy controls, HC) and analyzed using both methods. Consistent results were obtained for the two methods, concerning the comparisons AD vs. HC (significantly reduced FA in the whole CC of AD patients) and AD vs. aMCI (significantly reduced FA in the frontal portions of the CC in AD patients), thus identifying a relative preservation of the frontal CC regions in aMCI patients compared to AD. Conversely, the atlas-based method but not the TBSS showed the ability to detect a selective FA change in the CC parietal, left temporal and occipital regions of aMCI patients compared to HC. This finding indicates that an analysis including a higher number of voxels (with no restriction to tract skeletons) may detect characteristic pattern of FA in the CC of patients with preclinical AD, when brain atrophy is still modest.  相似文献   

20.
In this commentary, we accent the accumulating evidence for motor impairment as a common feature of early Alzheimer's disease (AD) pathology. In addition, we summarize the state of knowledge on this phenotype in experimental mouse models, expressing AD-associated genes like tau or amyloid precursor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号