首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Cyclic nucleotide-gated (CNG) ion channels of retinal photoreceptors and olfactory neurons are multimeric proteins of unknown stoichiometry. To investigate the subunit interactions that occur during CNG channel activation, we have used tandem cDNA constructs of the rod CNG channel to generate heteromultimeric channels composed of wild-type and mutant subunits. We introduced point mutations that affect channel activation: 1) D604M, which alters the relative ability of agonists to promote the allosteric conformational change(s) associated with channel opening, and 2) T560A, which primarily affects the initial binding affinity for cGMP, and to a lesser extent, the allosteric transition. At saturating concentrations of agonist, heteromultimeric channels were intermediate between wild-type and mutant homomultimers in agonist efficacy and apparent affinity for cGMP, cIMP, and cAMP, consistent with a model for the allosteric transition involving a concerted conformational change in all of the channel subunits. Results were also consistent with a model involving independent transitions in two or three, but not one or four, of the channel subunits. The behavior of the heterodimers implies that the channel stoichiometry is some multiple of 2 and is consistent with a tetrameric quaternary structure for the functional channel complex. Steady-state dose-response relations for homomultimeric and heteromultimeric channels were well fit by a Monod, Wyman, and Changeux model with a concerted allosteric opening transition stabilized by binding of agonist.  相似文献   

6.
It now appears that most of the ion channels discovered in glia are similar or identical to their neuronal equivalents. Recent studies show that glial cells can sense and respond to neuronal signals and that neurons may influence both the development and maintenance of ion channel expression of certain glial cells. Although they lack excitability, glia are probably active participants in brain function.  相似文献   

7.
There have been many attempts to develop a theoretical explanation of the phenomena of electromagnetic field interactions with biological systems. None of the reported efforts have been entirely successful in accounting for the observed experimental results, in particular with respect to the reports of interactions between extremely low frequency (ELF) magnetic fields and biological systems at ion cyclotron resonance frequencies. The approach used in this paper starts with the Lorentz force equation, but use is made of cylindrical co-ordinates and cylindrical boundary conditions in an attempt to more closely model the walls of an ion channel. The equations of motion of an ion that result from this approach suggest that the inside shape of the channel plus the ELF magnetic fields at specific frequencies and amplitudes could act as a gate to control the movement of the ion across the cell membrane.  相似文献   

8.
Forces acting on the S4 segments of the channel, the voltage-sensing structures, are analyzed. The conformational change in the Na channel is modeled as a helix-coil transition in the four S4 segments, coupled to the membrane voltage by electrical forces. In the model, repulsions between like charges make the S4 segment unstable, but field-dependent forces hold it in an alpha-helix configuration at resting potential. At threshold depolarization, the S4 helices cooperatively expand into random coils, breaking the hydrogen bonds connecting adjacent loops of the alpha helices. Exposed electron pairs left on the carbonyl oxygens constitute sites at which cations can bind selectively. The first hydrogen bond to break is at the channel exterior, then the second breaks, and so on in a zipper-like motion along the entire segment. The Na+ ions hop from one site to the next until all H bonds are broken and all sites are filled with ions. This completes the pathway over which the permeant ions move through the channel, driven by the electrochemical potential difference across the membrane. This microscopic mechanism is consistent with the thermodynamic explanation of ion-channel gating previously formulated as the ferroelectric-superionic transition hypothesis.  相似文献   

9.
An analysis of ionic channel conductance is presented in terms of dipole cooperative model. The dependence of conductance on displaced charge is found to be an S-shaped function. Basing on this function and kinetics of gating currents, the kinetic curves for the conductance are calculated. These curves are compared with Hodgkin--Huxley results on sodium channel. A good agreement may be observed for the case of positive jumps of the potential. Less accurate coincidence takes place for negative jumps of the potential.  相似文献   

10.
Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae.   总被引:4,自引:0,他引:4  
Ion channels in both the tonoplast and the plasma membrane of Saccharomyces cerevisiae have been characterized at the single channel level by patch-clamp techniques. The predominant tonoplast channel is cation selective, has an open-channel conductance of 120 pS in 100 mM KCl, and conducts Na+ or K+ equally well, and Ca2+ to a lesser extent. Its open probability (Po) is voltage-dependent, peaking at about -80 mV (cytoplasm negative), and falling to near zero at +80 mV. Elevated cytoplasmic Ca2+, alkaline cytoplasmic pH, and reducing agents activate the channel. The predominant plasma membrane channel is highly selective for K+ over anions and other cations, and shows strong outward rectification of the time-averaged current-voltage curves in cell-attached experiments. In isolated inside-out patches with micromolar cytoplasmic Ca2+, this channel is activated by positive going membrane voltages: mean Po is zero at negative membrane voltages and near unity at 100 mV. At moderate positive membrane voltages (20-40 mV), elevating cytoplasmic Ca2+ activates the channel to open in bursts of several hundred milliseconds duration. At higher positive membrane voltages, however, elevating cytoplasmic Ca2+ blocks the channel in a voltage-dependent fashion for periods of 2-3 ms. The frequency of these blocking events depends on cytoplasmic Ca2+ and membrane voltage according to second-order kinetics. Alternative cations, such as Mg2+ or Na+, block the yeast plasma-membrane K+ channel in a similar but less pronounced manner.  相似文献   

11.
Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast, leading to efflux of both K+ and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment: an increase in cytoplasmic pH and an increase in cytoplasmic Ca2+, although stomata can close without any measurable global increase in cytoplasmic Ca2+. There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K+ requires depolarization of the membrane potential into the range at which the outward K+ channel is open. ABA-induced activation of a non-specific cation channel, permeable to Ca2+, may contribute to the necessary depolarization, together with ABA-induced activation of S-type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up-regulates the outward K+ current at any given membrane potential; this activation is Ca(2+)-independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH-sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca(2+)-activated, have been identified which are capable of K+ efflux; these are the voltage-independent VK channel specific to K+, and the slow vacuolar (SV) channel which opens only at non-physiological tonoplast potentials (cytoplasm positive). The SV channel is permeable to K+ and Ca2+, and although it has been argued that it could be responsible for Ca(2+)-induced Ca2+ release, it now seems likely that it opens only under conditions where Ca2+ will flow from cytoplasm to vacuole. Although tracer measurements show unequivocally that ABA does activate efflux of Cl- from vacuole to cytoplasm, no vacuolar anion channel has yet been identified. There is clear evidence that ABA activates release of Ca2+ from internal stores, but the source and trigger for ABA-induced increase in cytoplasmic Ca2+ are uncertain. The tonoplast and another membrane, probably ER, have IP3-sensitive Ca2+ release channels, and the tonoplast has also cADPR-activated Ca2+ channels. Their relative contributions to ABA-induced release of Ca2+ from internal stores remain to be established. There is some evidence for activation of phospholipase C by ABA, by an unknown mechanism; plant phospholipase C may be activated by Ca2+ rather than by the G-proteins used in many animal cell signalling systems. A further ABA-induced channel modulation is the inhibition of the inward K+ channel, which is not essential for closing but will prevent opening. It is suggested that this is mediated through the Ca(2+)-activated protein phosphatase, calcineurin. The question of Ca(2+)-independent stomatal closure remains controversial. At the plasmalemma the stimulation of K+ efflux is Ca(2+)-independent and, at least in Arabidopsis, activation of anion efflux by ABA may also be Ca(2+)-independent. But there are no indications of Ca(2+)-independent mechanisms for K+ efflux at the tonoplast, and the appropriate anion channel at the tonoplast is still to be found. There is also evidence that ABA interferes with a control system in the guard cell, resetting its set-point to lower contents, suggesting that stretch-activated channels also feature in the regulation of guard cell ion channels, perhaps through interactions with cytoskeletal proteins. (ABSTRACT TRUN  相似文献   

12.
Previously, we described a model which treats ion channel gating as a discrete diffusion problem. In the case of agonist-activated channels at high agonist concentration, the model predicts that the closed lifetime probability density function from single channel recording approximates a power law with an exponent of -3/2 (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988a. Proc. Natl. Acad. Sci. USA. 85: 1503-1507). This prediction is consistent with distributions derived from a number of ligand-gated channels at high agonist concentration (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988b. Biophys. J. 54: 1165-1168.) but does not describe the behavior of ion channels at low activator concentrations. We examine here an extension of this model to include an agonist binding step. This extended model is consistent with the closed time distributions generated from the BC3H-1 nicotinic acetylcholine receptor for agonist concentrations varying over three orders of magnitude.  相似文献   

13.
A patch-clamp investigation was carried out on giant Escherichia coli spheroplasts. The membrane exhibited stretch-induced as well as "spontaneous" activity, with similar characteristics, i.e., a large number of conductance values arising from the cooperative behavior of channels in functional clusters. It appears likely that the same molecular species are responsible for both stretch-induced and "spontaneous" current conduction; the channel multiplexes can either respond to membrane stretch or function in an activate state, presumably brought about by the previous application of the mechanical stimulus.  相似文献   

14.
15.
The presence of ion-conducting pores in the membrane of Bacillus subtilis giant protoplasts was discovered using the patch-clamp technique. Membrane stretch caused the activation of several conductances with values in the nS range. The observations indicate the presence of substate levels and of aggregates of channels behaving in a cooperative manner. Following repeated stretch cycles, the channels exhibited spontaneous activity. The characteristics of the electrical phenomena afterwards changed in time in a manner suggesting the decay of the giant channels into lower-conductance species, presumably corresponding to building blocks of the giant stretch-activated channels.  相似文献   

16.
Due to the relative ease of obtaining their crystal structures, bacterial ion channels provide a unique opportunity to analyse structure and function of their eukaryotic homologues. This review describes prokaryotic channels whose structures have been determined. These channels are KcsA, a bacterial homologue of eukaryotic potassium channels, MscL, a bacterial mechanosensitive ion channel and ClC0, a prokaryotic homologue of the eukaryotic ClC family of anion-selective channels. General features of their structure and function are described with a special emphasis on the advantages that these channels offer for understanding the properties of their eukaryotic homologues. We present amino-acid sequences of eukaryotic proteins related in their primary sequences to bacterial mechanosensitive channels. The usefulness of bacterial mechanosensitive channels for the studies on general principles of mechanosensation is discussed.  相似文献   

17.
Transmitter-gated channels, which can be selective for cations or for anions, form an important class among the membrane receptors responsible for signal transduction. Thirteen principal types of these channels can now be recognized and most of these are available for analysis in recombinant form. It is instructive to contrast their characteristic structural features with those of the two other primary classes of the signal-transducing receptors of membranes.  相似文献   

18.
We present simulation results for the effective diffusion coefficients of a sodium ion in a series of model ion channels of different diameters and hydrophobicities, including models of alamethicin, a leucine-serine peptide, and the M2 helix bundle of the nicotinic acetylcholine receptor. The diffusion coefficient, which in the simulations has a value of 0.15(2) A2ps-1 in bulk water, is found to be reduced to as little as 0.02(1) A2ps-1 in the narrower channels, and to about 0.10(5) A2ps-1 in wider channels such as the nicotinic acetylcholine receptor. It is anticipated that this work will be useful in connection with calculations of channel conductivity using such techniques as the Poisson-Nernst-Planck equation, Eyring rate theory, or Brownian dynamics.  相似文献   

19.
Tracing the roots of ion channels.   总被引:14,自引:0,他引:14  
L Y Jan  Y N Jan 《Cell》1992,69(5):715-718
Two sets of recent findings draw our attention to questions concerning the origin of ion channels. First, there is sequence similarity among five classes of channels: voltage-gated channels, a putative Ca(2+)-activated K+ channel, cyclic nucleotide-gated cation channels, a putative Ca2+ channel for phosphoinositide-mediated Ca2+ entry, and a plant K+ channel/transporter. Like voltage-gated K+ channels, the most recently identified members of the superfamily share the basic design of one set of six potential membrane-spanning segments plus the H5 sequence; as such, they may resemble more closely the ancestral channel, which is likely to predate the separation of the animal and plant kingdoms. Second, several members of the ABC superfamily function as ion channels, even though they were previously known as transporters or enzymes. Did some ancestral enzymes subsequently acquire channel/transporter function? Or could it be the other way around? Aside from evolutionary considerations, enzymes and ion channels can no longer be treated as separate and nonoverlapping groups of proteins. When one molecule exhibits both functions, there are interesting mechanistic questions: How might the enzyme activity such as ATP hydrolysis be coupled to activation/regulation of the intrinsic channel activity? How might interactions between the permeant ions and the channel pore in turn regulate the enzymatic function of the same molecule? It seems possible that the latter is an extension of the observed coupling between permeant ions and the gating machinery of an ion channel (Swenson and Armstrong, 1981). Finally, the potential cross-regulation between channel activity and enzyme activity within the same molecule offers many intriguing possibilities for the integration of different cellular functions.  相似文献   

20.
Quantitative analysis of patch clamp data is widely based on stochastic models of single-channel kinetics. Membrane patches often contain more than one active channel of a given type, and it is usually assumed that these behave independently in order to interpret the record and infer individual channel properties. However, recent studies suggest there are significant channel interactions in some systems. We examine a model of dependence in a system of two identical channels, each modeled by a continuous-time Markov chain in which specified transition rates are dependent on the conductance state of the other channel, changing instantaneously when the other channel opens or closes. Each channel then has, e.g., a closed time density that is conditional on the other channel being open or closed, these being identical under independence. We relate the two densities by a convolution function that embodies information about, and serves to quantify, dependence in the closed class. Distributions of observable (superposition) sojourn times are given in terms of these conditional densities. The behavior of two channel systems based on two- and three-state Markov models is examined by simulation. Optimized fitting of simulated data using reasonable parameters values and sample size indicates that both positive and negative cooperativity can be distinguished from independence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号