首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vinylogue of NAD, 3-pyridylacryloamide adenine dinucleotide, was prepared from NAD and 3-pyridylacryloamide through the snake venom NADase-catalyzed transglycosidation reaction. The analog, purified by ion-exchange chromatography, was obtained in a 55% yield. The cyanide adduct and reduced form of the analog exhibited absorbance maxima at 358 nm and 378 nm, respectively, with extinction coefficients in each case being 2.3-times higher than those reported for the corresponding NAD derivatives. 3-Pyridylacryloamide adenine dinucleotide served as a coenzyme with bovine liver glutamic dehydrogenase and to a lesser extent with malate and lactate dehydrogenases. The analog was not reduced in reactions catalyzed by yeast and horse liver alcohol dehydrogenases, sheep liver sorbitol dehydrogenase, and rabbit muscle glycerophosphate dehydrogenase. Substitution of the pyridylacryloamide analogs for NAD and NADH in the assay of substrates for glutamic dehydrogenase was demonstrated.  相似文献   

2.
The NAD glycohydrolase (NADase) from Bungarus fasciatus snake venom was adsorbed on concanavalin A-Sepharose, and demonstrated to retain both hydrolase and transglycosidase activities in the bound form. The matrix-bound enzyme was stable to repeated washing with buffer and storage at 4°C. The bound enzyme exhibited the same Km value for hydrolysis of nicotinamide-1,N6-ethenoadenine dinucleotide as previously measured with the soluble, purified form of the enzyme. The bound NADase was used repeatedly for a preparative-scale synthesis of 3-acetylpyridine adenine dinucleotide. It was further demonstrated that the immobilized enzyme could be prepared directly from crude snake venom, thus avoiding the time required for purification. The application of the immobilized snake venom NADase for the preparation of pyridine nucleotide coenzyme analogs has many advantages over procedures used previously for analog synthesis.  相似文献   

3.
Starting from 6-chloropurine riboside and NAD+, different reactive analogues of NAD+ have been obtained by introducing diazoniumaryl or aromatic imidoester groups via flexible spacers into the nonfunctional adenine moiety of the coenzyme. The analogues react with different amino-acid residues of dehydrogenases and form stable amidine or azobridges, respectively. After the formation of a ternary complex by the coenzyme, the enzyme and a pseudosubstrate, the reactive spacer is anchored in the vicinity of the active site. Thus, the coenzyme remains covalently attached to the protein even after decomposition of the complex. On addition of substrates the covalently bound coenzyme is converted to the dihydro-form. In enzymatic tests the modified dehydrogenases show 80-90% of the specific activity of the native enzymes, but they need remarkably higher concentrations of free NAD+ to achieve these values. The dihydro-coenzymes can be reoxidized by oxidizing agents like phenazine methosulfate or by a second enzyme system. Various systems for coenzyme regeneration were investigated; the modified enzymes were lactate dehydrogenase from pig heart and alcohol dehydrogenase from horse liver; the auxiliary enzymes were alcohol dehydrogenase from yeast and liver, lactate dehydrogenase from pig heart, glutamate dehydrogenase and alanine dehydrogenase. Lactate dehydrogenase from heart muscle is inhibited by pyruvate. With alanine dehydrogenase as the auxiliary enzyme, the coenzyme is regenerated and the reaction product, pyruvate, is removed. This system succeeds to convert lactate quantitatively to L-alanine. The thermostability of the binary enzyme systems indicates an interaction of covalently bound coenzymes with both dehydrogenases; both binding sites seem to compete for the coenzyme. The comparison of dehydrogenases with different degrees of modifications shows that product formation mainly depends on the amount of incorporated coenzyme.  相似文献   

4.
《BBA》1987,893(3):386-397
Three NAD(P)H dehydrogenases were found and purified from a soluble fraction of cells of the purple non-sulfur bacterium Rhodobacter capsulatus, strain B10. Molecular mass of NAD(P)H, NADPH and NADH dehydrogenases are 67 000 (4 · 18 000), 35 000 and 39 000, and the isoelectric points are 4.6, 4.3 and 4.5, respectively. NAD(P)H dehydrogenase is characterized by a higher sensitivity to quinacrine, NADPH dehydrogenase by its sensitivity to p-chloromercuribenzoate and NADH dehydrogenase by its sensitivity to sodium arsenite. In contrast to the other two enzymes, NAD(P)H dehydrogenase is capable of oxidizing NADPH as well as NADH, but the ratio of their oxidation rates depends on the pH. All NAD(P)H dehydrogenases reacted with ferricyanide, 2,6-dichlorophenolindophenol, benzoquinone and naphthoquinone, but did not exhibit transhydrogenase, reductase or oxidase activity. Moreover, NADH dehydrogenase was also capable of reducing FAD and FMN. NAD(P)H and NADH dehydrogenases possessed cytochrome-c reductase activity, which was stimulated by menadione and ubiquinone Q1. The activity of NAD(P)H and NADH dehydrogenases depended on culture-growth conditions. The activity of NAD(P)H dehydrogenase from cells grown under chemoheterotrophic aerobic conditions was the lowest and it increased notably under photoheterotrophic anaerobic conditions upon lactate or malate growth limitation. The activity of NADH dehydrogenase was higher from the cells grown under photoheterotrophic anaerobic conditions upon nitrate growth limitation and under chemoheterotrophic aerobic conditions. NADPH dehydrogenase synthesis dependence on R. capsulatus growth conditions was insignificant.  相似文献   

5.
An homology model of Candida methylica formate dehydrogenase (cmFDH) was constructed based on the Pseudomonas sp. 101 formate dehydrogenase (psFDH) structure. An aspartic acid residue in the model was predicted to interact with the adenine ribose of the NAD cofactor, in common with many NAD-dependent oxoreductases. Replacement of this aspartic acid residue by serine in cmFDH removed the absolute requirement for NAD over NADP shown by the wild type enzyme. Taken with similar results shown by d- and l-lactate dehydrogenases, this suggests that an aspartic acid in this position is a major determinant of coenzyme specificity in NAD/NADP-dependent dehydrogenases.  相似文献   

6.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

7.
Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.  相似文献   

8.
l-Amino acid dehydrogenases are a group of enzymes that catalyze the reversible oxidative deamination of l-amino acids to their corresponding 2-oxoacids, using either nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as cofactors. These enzymes have been studied widely because of their potential applications in the synthesis of amino acids for use in production of pharmaceutical peptides, herbicides and insecticides, in biosensors or diagnostic kits, and development of coenzyme regeneration systems for industrial processes. This article presents a review of the currently available data about the recently discovered amino acid dehydrogenase superfamily member l-aspartate dehydrogenase (l-AspDH), their relevant catalytic properties and speculated physiological roles, and potential for biotechnological applications. The proposed classification of l-AspDH on the basis of bioinformatic information and potential role in vivo into NadB (NAD biosynthesis-related) and non-NadB type is unique. In particular, the mesophilic non-NadB type l-AspDH is a novel group of amino acid dehydrogenases with great promise as potential industrial biocatalysts owing to their relatively high catalytic properties at room temperature. Considering that only a few l-AspDH homologs have been characterized so far, identification and prodigious enzymological research of the new members will be necessary to shed light on the gray areas pertaining to these enzymes.  相似文献   

9.
A population of simultaneously germinating conidia is an ideal inoculum of the powdery mildew pathogen, Oidium neolycopersici. In conditions of no or low wind velocity, O. neolycopersici successively stacks mature conidia on conidiophores in a chain formation (pseudochain), without releasing the precedent mature conidia. These pseudochain conidia represent a perfect inoculum, in which all conidia used for inoculation germinate simultaneously. However, we found that conidia must be collected before they fall to the leaf surface, because the germination rate was lower among conidia deposited on the leaf surface. We used an electrostatic spore collector to collect the pseudochain conidia, and their high germination rate was not affected by this treatment. The spore collector consisted of an electrified insulator probe, which created an electrostatic field around its pointed tip, and attracted conidia within its electric field. The attractive force created by the probe tip was directly proportional to voltage, and was inversely proportional to the distance between the tip and a target colony on a leaf. Pseudochain conidia were successfully collected by bringing the electrified probe tip close to target colonies on leaves. In this way, conidia were collected from colonies at 3-d intervals. This effectively collected all conidia from conidiophores before they dropped to the leaf surface. A high germination rate was observed among conidia attracted to the probe tip (95.5 ± 0.6 %). Conidia were easily suspended in water with added surfactant, and retained their germination ability. These conidia were infective and produced conidia in pseudochains on conidiophores after inoculation. The electrostatic spore collection method can be used to collect conidia as they form on conidiophores, thus obtaining an inoculum population in which all of the conidia germinate simultaneously.  相似文献   

10.
The formation of nicotinamide adenine dinucleotide (phosphate) glycohydrolase [NAD(P)ase; EC 3.2.2.6] in Neurospora crassa was found to be both spatially and temporally programmed. Ascospores were devoid of the enzyme. Vegetative hyphae contained little or no NADase activity. During the differentiation of aerial cell types (aerial hyphae and macroconidia), the specific activity of the enzyme increased by at least three orders of magnitude. Although transiently associated with young aerial hyphae, the enzyme became an integral and stable part of the mature macroconidia. NAD(P)ase could also be “derepressed” under conditions that permitted aerialogenesis in the absence of conidiation. The increase in the specific activity of NAD(P)ase during cell differentiation required concomitant RNA and protein synthesis; in vitro mixing experiments revealed no cell-specific activators or inhibitors of enzyme activity. The temperature-critical period for the in vitro inactivation of a temperature-sensitive enzyme variant was restricted to the period of actual enzyme expression.The data reported in this paper combined with data reported in a previous paper (Nelson et al., 1975b) underscore an important distinction in studies of development, namely, developmental regulation of a macromolecule versus regulation of development by a macromolecule. This paper provides evidence that NAD(P)ase is developmentally regulated. The previous paper provides evidence that the appearance of this enzyme need not regulate development.  相似文献   

11.
Extraction between two aqueous phases has been used for rapid partial purification of enzymes present in porcine muscle using polymer-bound triazine dyes. These enzyme ligands, bound to poly(ethylene glycol), are restricted to the upper phase of a water-dextran-poly(ethylene glycol) two-phase (liquid-liquid) system. Nineteen triazine dyes were tested for their abilities to extract some enzymes (lactate dehydrogenase, malate dehydrogenase, myokinase and pyruvate kinase) present in crude muscle sap into the dye-containing upper phase. Bulk proteins were to large extent recovered in the lower dextran-rich phase. By sequential change of the ligand several of the studied enzymes were extracted into separate upper phases and in 2–8 times purification (relative to protein) within 25 min. The two dehydrogenases were, however, extracted together. The total time for enzyme preparation was reduced to 40 min by direct homogenization of the tissue in the liquid-liquid two-phase system followed by five affinity extraction steps and separation of enzyme from the dye ligands. The yield was in this case considerably reduced.  相似文献   

12.
1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems associated with the use of immobilized derivatives for enzyme binding and mechanistic studies are briefly discussed.  相似文献   

13.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

14.
The spectra of the circular polarization of luminescence of a number of dehydrogenases with the fluorescent coenzyme nicotinamide-1,-N6-ethenoadenine dinucleotide were measured. By use of this technique it is demonstrated that there is a difference in structure between the adenine subsite in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase on the one hand and pig heart lactate dehydrogenase, horse liver alcohol dehydrogenase, beef liver glutamate dehydrogenase, and pig heart malate dehydrogenase on the other hand. It is concluded that the non-co-operative dehydrogenases have similar, if not identical, adenine subsites whereas in glyceraldehyde-3-phosphate dehydrogenase, a strongly co-operative enzyme, a different structure of the adenine subsite has evolved.  相似文献   

15.
Saccharomyces cerevisiae contains two distinct l-glutamate dehydrogenases. These enzymes are affected in a reciprocal fashion by growth on ammonia or dicarboxylic amino acids as the nitrogen source. The specific activity of the nicotinamide adenine dinucleotide phosphate (NADP) (anabolic) enzyme is highest in ammonia-grown cells and is reduced in cells grown on glutamate or aspartate. Conversely, the specific activity of the nicotinamide adenine dinucleotide (NAD) (catabolic) glutamate dehydrogenase is highest in cells grown on glutamate or aspartate and is much lower in cells grown on ammonia. The specific activity of both enzymes is very low in nitrogen-starved yeast. Addition of the ammonia analogue methylamine to the growth medium reduces the specific activity of the NAD-dependent enzyme and increases the specific activity of the NADP-dependent enzyme.  相似文献   

16.
Adenine and pyridine nucleotides play vital roles in virtually all aspects of plant growth. This study analyzed the response of adenine and pyridine metabolism during germination and early seedling growth (ESG) of Brassica juncea exposed to two doses of arsenate (AsV), 100 and 250 μM, having non-significant or significant inhibitory effects, respectively, on germination and ESG. The ratio of NAD/NADP and NAD/NADH showed no significant change in control and 100 μM AsV, but increased significantly at 250 μM AsV during initial 24 h and also at 7th day. The activity of enzymes of NAD metabolism, viz. NAD kinase, NADP phosphatase, nicotinamidase and poly(ADP-ribose) polymerases showed significant change mostly at 250 μM AsV. Further, significant decrease was observed in the ratio of ATP/ADP and in the activities of adenylate kinase and apyrase at 250 μM AsV at 7th day. External supply of ATP (1 mM) to 100 and 250 μM AsV significantly improved germination percentage and germination strength of the seeds as compared to AsV treatments alone. The study concludes that with the increase in concentration of AsV, the balance of NAD/NADP, NAD/NADH and ATP/ADP and the activities of enzymes of adenine and pyridine metabolism were significantly altered and that these changes may be responsible for inhibitory effects of AsV on germination and ESG.  相似文献   

17.
Nicotinamide adenine dinucleotide (NAD)-dependent d(minus)-and l(plus)-lactate dehydrogenases have been partially purified 89- and 70-fold simultaneously from cell-free extracts of Pediococcus cerevisiae. Native molecular weights, as estimated from molecular sieve chromatography and electrophoresis in nondenaturing polyacrylamide gels, are 71,000 to 73,000 for d(minus)-lactate dehydrogenase and 136,000 to 139,000 for l(plus)-lactate dehydrogenase. Electrophoresis in sodium dodecyl sulfate-containing gels reveals subunits with approximate molecular weights of 37,000 to 39,000 for both enzymes. By lowering the pyruvate concentration from 5.0 to 0.5 mM, the pH optimum for pyruvate reduction by d(minus)-lactate dehydrogenase decreases from pH 8.0 to 3.6. However, l(plus)-lactate dehydrogenase displays an optimum for pyruvate reduction between pH 4.5 and 6.0 regardless of the pyruvate concentration. The enzymes obey Michaelis-Menten kinetics for both pyruvate and reduced NAD at pH 5.4 and 7.4, with increased affinity for both substrates at the acid pH. alpha-Ketobutyrate can be used as a reducible substrate, whereas oxamate has no inhibitory effect on lactate oxidation by either enzyme. Adenosine triphosphate causes inhibition of both enzymes by competition with reduced NAD. Adenosine diphosphate is also inhibitory under the same conditions, whereas NAD acts as a product inhibitor. These results are discussed with relation to the lactate isomer production during the growth cycle of P. cerevisiae.  相似文献   

18.
Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC 1.4.1.3). Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH4+ or α-ketoglutarate. The soluble enzyme was more sensitive to NH4+ inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.  相似文献   

19.
The l-alanine dehydrogenase from cell-free extracts of Desulfovibrio desulfuricans was purified approximately 56-fold. The Michaelis constants for the substrates of the amination reaction and the pH optima for the reactions catalyzed by this enzyme closely agree with those reported for other l-alanine dehydrogenases. Pyruvate was found to inhibit the amination reaction. The enzyme was absolutely specific for l-alanine and nicotinamide adenine dinucleotide. Its sensitivity to para-chloromecuribenzoate suggests that sulfhydryl groups may be necessary for enzymatic activity. These extracts also contained a nicotinamide adenine dinucleotide phosphate-specific glutamic dehydrogenase which was separated from the l-alanine dehydrogenase during purification.  相似文献   

20.
Electrophoretic studies were performed on enzymes concerned with the oxidation of malate in free-living and bacteroid cells of Mesorhizobium ciceri CC 1192, which forms nitrogen-fixing symbioses with chickpea (Cicer arietinum L.) plants. Two malate dehydrogenases were detected in extracts from both types of cells in native polyacrylamide electrophoresis gels that were stained for enzyme activity. One band of malate dehydrogenase activity was stained only in the presence of NADP+, whereas the other band was revealed with NAD+ but not NADP+. Further evidence for the occurrence of separate NAD- and NADP-dependent malate dehydrogenases was obtained from preliminary enzyme kinetic studies with crude extracts from free-living M. ciceri CC 1192 cells. Activity staining of electrophoretic gels also indicated the presence of two malic enzymes in free-living and bacteroid cells of M. ciceri CC 1192. One malic enzyme was active with both NAD+ and NADP+, whereas the other was specific for NADP+. Possible roles of the multiple forms of malate dehydrogenase and malic enzyme in nitrogen-fixing symbioses are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号