首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of purine salvage of adenine and hypoxanthine into the adenine nucleotide (AdN) pool of the different skeletal muscle phenotype sections of the rat were measured using an isolated perfused hindlimb preparation. Tissue adenine and hypoxanthine concentrations and specific activities were controlled over a broad range of purine concentrations, ranging from 3 to 100 times normal, by employing an isolated rat hindlimb preparation perfused at a high flow rate. Incorporation of [(3)H]adenine or [(3)H]hypoxanthine into the AdN pool was not meaningfully influenced by tissue purine concentration over the range evaluated (approximately 0.10-1.6 micromol/g). Purine salvage rates were greater (P < 0.05) for adenine than for hypoxanthine (35-55 and 20-30 nmol x h(-1) x g(-1), respectively) and moderately different (P < 0.05) among fiber types. The low-oxidative fast-twitch white muscle section exhibited relatively low rates of purine salvage that were approximately 65% of rates in the high-oxidative fast-twitch red section of the gastrocnemius. The soleus muscle, characterized by slow-twitch red fibers, exhibited a high rate of adenine salvage but a low rate of hypoxanthine salvage. Addition of ribose to the perfusion medium increased salvage of adenine (up to 3- to 6-fold, P < 0.001) and hypoxanthine (up to 6- to 8-fold, P < 0.001), depending on fiber type, over a range of concentrations up to 10 mM. This is consistent with tissue 5-phosphoribosyl-1-pyrophosphate being rate limiting for purine salvage. Purine salvage is favored over de novo synthesis, inasmuch as delivery of adenine to the muscle decreased (P < 0.005) de novo synthesis of AdN. Providing ribose did not alter this preference of purine salvage pathway over de novo synthesis of AdN. In the absence of ribose supplementation, purine salvage rates are relatively low, especially compared with the AdN pool size in skeletal muscle.  相似文献   

2.
3.
Purine biosynthesis by the 'de novo' pathway was demonstrated in isolated rat extensor digitorum longus muscle with [1-14C]glycine, [3-14C]serine and sodium [14C]formate as nucleotide precursors. Evidence is presented which suggests that the source of glycine and serine for purine biosynthesis is extracellular rather than intracellular. The relative incorporation rates of the three precursors were formate greater than glycine greater than serine. Over 85% of the label from formate and glycine was recovered in the adenine nucleotides, principally ATP. Azaserine markedly inhibited purine biosynthesis from both formate and glycine. Cycloserine inhibited synthesis from serine, but not from formate. Adenine, hypoxanthine and adenosine markedly inhibited purine synthesis from sodium [14C]formate.  相似文献   

4.
Total creatine (Cr(total) = phosphocreatine + creatine) concentrations differ substantially among mammalian skeletal muscle. Because the primary means to add Cr(total) to muscle is uptake of creatine through the sodium-dependent creatine transporter (CrT), differences in creatine uptake and CrT expression could account for the variations in [Cr(total)] among muscle fiber types. To test this hypothesis, hindlimbs of adult rats were perfused with 0.05-1 mM [(14)C]creatine for up to 90 min. Creatine uptake rates at 1 mM creatine were greatest in the soleus (140 +/- 8.8 nmol x h(-1) x g(-1)), less in the red gastrocnemius (117 +/- 8.3), and least in the white gastrocnemius (97 +/- 10.7). These rates were unaltered by time, insulin concentration, or increased perfusate sodium concentration. Conversely, creatine uptake rates were correspondingly decreased among fiber types by lower creatine and sodium concentrations. The CrT protein content by Western blot analysis was similarly greatest in the soleus, less in the red gastrocnemius, and least in the white gastrocnemius, whereas CrT mRNA was not different. Creatine uptake rates differ among skeletal muscle fiber sections in a manner reasonably assigned to the 58-kDa band of the CrT. Furthermore, creatine uptake rates scale inversely with creatine content, with the lowest uptake rate in the fiber type with the highest Cr(total) and vice versa. This suggests that the creatine pool fractional turnover rate is not common across muscle phenotypes and, therefore, is differentially regulated.  相似文献   

5.
Polymorphism of myosin among skeletal muscle fiber types   总被引:2,自引:1,他引:1       下载免费PDF全文
An immunocytochemical approach was used to localize myosin with respect to individual fibers in rat skeletal muscle. Transverse cryostat sections of rat diaphragm, a fast-twitch muscle, were exposed to fluorescein-labeled immunoglobulin against purified chicken pectoralis myosin. Fluorescence microscopy revealed a differential response among fiber types, identified on the basis of mitochondrial content. All white and intermediate fiber but only about half of the red fiber reacted with his antimyosin. In addition, an alkali-stable ATPase had the same pattern of distribution among fibers, which is consistent with the existence of two categories of red fibers. The positive response of certain red fibers indicates either that their myosin has antigenic determinants in common with "white" myosin, or that the immunogen contained a "red" myosin. Myosin, extracted from a small region of the pectorlis which consists entirely of white fibers, was used to prepare an immunoadsorbent column to isolate antibodies specific for white myosin. This purified anti-white myosin reacted with the same fibers of the rat diaphragm that had reacted with the white, intermediate, and some red fibers are sufficiently homologous to share antigenic determinants. In a slow-twitch muscle, the soleus, only a minority of the fiber reacted with antipectoralis myosin. The majority failed to respond; hence, they are not equivalent to intermediate fibers of the diaphragm; despite their intermediate mitochondrial content. Immunocytochemical analysis of two different musles of the rat has demonstrated that more than one isoenzyme of myosin can exist in a single muscle, and that individual fiber types can be recognized by immunological differences in their myosin. We conclude that, in the rat diaphragm, there are at least two immunochemically distinct types of myosin and four types of muscle fibers: white, intermediate, and two red. We suggest that these fibers correspond to the four types of motor units described by Burke et al. (Burke, R. E., D. N. Levine, P. Tsairis, and F. E. Zajac, III 1973. J. Physiol. (Lond) 234:723-748.)in the cat gastrocnemius.`  相似文献   

6.
Epinephrine was used to activate the heparin non-releasable lipoprotein lipase (LPL) in the 3 skeletal muscle fiber types of the perfused rat hindlimb. Following a 9 min washout of the capillary-bound lipoprotein lipase, the hindquarter of the rat was perfused with a buffer containing 10 nM of epinephrine. Activity of the residual LPL in soleus, red vastus lateralis, and white vastus lateralis muscles increased 75%, 96%, and 102% respectively, following epinephrine perfusion. These results suggest that skeletal muscle LPL is under hormonal control possibly through protein phosphorylation by cyclic AMP dependent protein kinase.  相似文献   

7.
Summary Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P<0.05) of the total population, four weeks after surgery.This research was funded in part by grants from The Graduate School at Washington State University, and The Society of the Sigma Xi  相似文献   

8.
Slow myosin heavy chain 2 (MyHC2) gene expression in fetal avian skeletal muscle fibers is regulated by innervation and protein kinase C (PKC) activity. Fetal chick muscle fibers derived from the slow twitch medial adductor (MA) muscle express slow MyHC2 when innervated in vitro. The same pattern of slow MyHC2 regulation occurs in MA muscle fibers in which PKC activity is inhibited by staurosporine. To further test the function of PKC activity in the regulation of slow MyHC2 expression, wild-type and dominant-negative mutations of PKCalpha and PKCtheta were overexpressed in MA muscle fibers in vitro. Overexpression of wild-type PKCalpha and PKCtheta cDNAs resulted in increased PKC activities in muscle fibers and concomitant repression of slow MyHC2 expression under conditions that normally induced gene expression. Point mutations leading to single amino acid substitutions were generated in the ATP binding domains of PKCalpha and PKCtheta. Overexpression of CMVPKCalphaR368 and CMVPKCthetaR409 resulted in decreased PKC activities in transfected MA muscle fibers. Furthermore, transfection of CMVPKCalphaR368 and CMVPKCthetaR409 mutant constructs into MA muscle fibers did not repress the capacity of these fibers to express slow MyHC2 when cultured in medium containing staurosporine or when innervated. These results indicate that PKC activity represses slow MyHC2 expression and that PKC down-regulation, possibly in response to innervation, is required but not sufficient for slow MyHC2 expression.  相似文献   

9.
The purpose of this study was to determine whether fiber hyperplasia occurs in the rat plantaris muscle during postnatal weeks 3-20. Total muscle fiber number, obtained via the nitric acid digestion method, increased by 28% during the early postnatal rapid growth phase (3-10 weeks), whereas the number of branched fibers was consistently low. Whole-muscle mitotic activity and amino acid uptake levels showed an inverse relationship to the increase in total fiber number. The expression of MyoD mRNA (RT-PCR) levels decreased from 3 to 20 weeks of age, as did the detection of anti-BrdU- and MyoD-positive cells in histological sections. Immunohistochemical staining patterns for MyoD, myogenin, or developmental myosin heavy chain on sections stained for laminin (identification of the basal lamina) and electron micrographs clearly indicate that de novo fiber formation occurred in the interstitial spaces. Myogenic cells in the interstitial spaces were negative for the reliable specific satellite cell marker M-cadherin. In contrast, CD34 (an established marker for hematopoietic stem cells)-positive cells were located only in the interstitial spaces, and their frequency and location were similar to those of MyoD- and/or myogenin-positive cells. These findings are consistent with fiber hyperplasia occurring in the interstitial spaces of the rat plantaris muscle during the rapid postnatal growth phase. Furthermore, these data suggest that the new fibers may be formed from myogenic cells in the interstitial spaces of skeletal muscle and may express CD34 that is distinct from satellite cells.  相似文献   

10.
Distribution of myosin isoenzymes among skeletal muscle fiber types.   总被引:13,自引:4,他引:13  
Using an immunocytochemical approach, we have demonstrated a preferential distribution of myosin isoenzymes with respect to the pattern of fiber types in skeletal muscles of the rat. In an earlier study, we had shown that fluorescein-labeled antibody against "white" myosin from the chicken pectoralis stained all the white, intermediate and about half the red fibers of the rat diaphragm, a fast-twitch muscle (Gauthier and Lowey, 1977). We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains. Antibodies capable of distinguishing between alkali 1 and alkali 2 type myosin were also used to localize these isoenzymes in the same fast muscle. We observed, by both direct and indirect immunofluorescence, that the same fibers which had reacted previously with antibodies against white myosin reacted with antibodies to the proteolytic subfragments and to the low molecular-weight subunits of myosin. These results confirm our earlier conclusion that the myosins of the reactive fibers in rat skeletal muscle are sufficiently similar to share antigenic determinants. The homology, furthermore, is not confined to a limited region of the myosin molecule, but includes the head and rod portions and all classes of light chains. Despite the similarities, some differences exist in the protein compositions of these fibers: antibodies to S1 did not stain the reactive (fast) red fiber as strongly as they did the white and intermediate fibers. Non-uniform staining was also observed with antibodies specific for A2 myosin; the fast red fiber again showed weaker fluorescence than did the other reactive fibers. These results could indicate a variable distribution of myosin isoenzymes according to their alkali-light chain composition among fiber types. Alternatively, there may exist yet another myosin isoenzyme which is localized in the fast red fiber. Those red fibers which did not react with any of the antibodies to pectoralis myosin, did react strongly with an antibody against myosin isolated from the anterior latissimus dorsi (ALD), a slow red muscle of the chicken. The myosin in these fibers (slow red fibers) is, therefore, distinct from the other myosin isoenzymes. In the rat soleus, a slow-twitch muscle, the majority of the fibers reacted only with antibody against ALD myosin. A minority, however, reacted with antiboddies to pectoralis as well as ALD myosin, which indicates that both fast and slow myosin can coexist within the same fiber of a normal adult muscle. These immunocytochemical studies have emphasized that a wide range of isoenzymes may contribute to the characteristic physiological properties of individual fiber types in a mixed muscle.  相似文献   

11.
12.
13.
Development of muscle fiber types in the prenatal rat hindlimb   总被引:6,自引:0,他引:6  
Immunohistochemistry was used to examine the expression of embryonic, slow, and neonatal isoforms of myosin heavy chain in muscle fibers of the embryonic rat hindlimb. While the embryonic isoform is present in every fiber throughout prenatal development, by the time of birth the expression of the slow and neonatal isoforms occurs, for the most part, in separate, complementary populations of fibers. The pattern of slow and neonatal expression is highly stereotyped in individual muscles and mirrors the distribution of slow and fast fibers found in the adult. This pattern is not present at the early stages of myogenesis but unfolds gradually as different generations of fibers are added. As has been noted by previous investigators (e.g., Narusawa et al., 1987, J. Cell Biol. 104, 447-459), all of the earliest generation (primary) muscle fibers initially express the slow isoform but some of these primary fibers later lose this expression. In this study we show that loss of slow myosin in these fibers is accompanied by the expression of neonatal myosin. This switch in isoform expression occurs in all primary fibers located in specific regions of particular muscles. However, in other muscles primary fibers which retain their slow expression are extensively intermixed with those that switch to neonatal expression. Later generated (secondary) muscle fibers, which are interspersed among the primary fibers, express neonatal myosin, although a few of them in stereotyped locations later switch from neonatal to slow myosin expression. Many of the observed changes in myosin expression occur coincidentally with the arrival of axons in the limb or the invasion of axons into individual muscles. Thus, although both fiber birth date and intramuscular position are grossly predictive of fiber fate, neither factor is sufficient to account for the final pattern of fiber types seen in the rat hindlimb. The possibility that fiber diversification is dependent upon innervation is tested in the accompanying paper (K. Condon, L. Silberstein, H.M. Blau, and W.J. Thompson, 1990, Dev. Biol. 138, 275-295).  相似文献   

14.
This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another model of regeneration, but rather produces a unique environment which induces satellite cell migration and subsequent fiber formation in the interfascicular space. De novo fiber formation is apparently the principal mechanism for the hyperplasia reported to occur in the ALD muscle undergoing hypertrophy induced by wing-weighting.  相似文献   

15.
Summary Experiments are reported demonstrating that differential rates of inactivation of the histochemical staining for myofibrillar actomyosin ATPase in rat skeletal muscle fibers exist following inclusion of low concentrations of Cu2+ in the preincubation medium. This response of rat muscle occurs at near neutral (7.40), acid (4.60), and alkaline (10.30) pH. The response to Cu2+ appears to result from a binding of Cu2+ onto the myofibrillar complex, probably on myosin itself, as it can be reversed by soaking of the pretreated muscle sections in sodium cyanide or the Cu2+ chelator diethyldithiocarbamate. The pattern of modification of the staining pattern following pretreatment with Cu2+ is the mirror image of that produced by pretreatment with acid. The results demonstrate that the inclusion of Cu2+ in the preincubation media for the myofibrillar actomyosin ATPase can be a useful tool to differentiate fiber types. They also support the earlier conclusion that three distinct types of type II fibers can be identified in rat skeletal muscle based on the histochemical staining for myofibrillar actomyosin ATPase.  相似文献   

16.
Experiments are reported demonstrating that differential rates of inactivation of the histochemical staining for myofibrillar actomyosin ATPase in rat skeletal muscle fibers exist following inclusion of low concentrations of Cu2+ in the preincubation medium. This response of rat muscle occurs at near neutral (7.40), acid (4.60), and alkaline (10.30) pH. The response to Cu2+ appears to result from a binding of Cu2+ onto the myofibrillar complex, probably on myosin itself, as it can be reversed by soaking of the pretreated muscle sections in sodium cyanide or the Cu2+ chelator diethyldithiocarbamate. The pattern of modification of the staining pattern following pretreatment with Cu2+ is the mirror image of that produced by pretreatment with acid. The results demonstrate that the inclusion of Cu2+ in the preincubation media for the myofibrillar actomyosin ATPase can be a useful tool to differentiate fiber types. They also support the earlier conclusion that three distinct types of type II fibers can be identified in rat skeletal muscle based on the histochemical staining for myofibrillar actomyosin ATPase.  相似文献   

17.
Percutaneous muscle biopsies were obtained from the vastus lateralis of physically active men (n = 12) 1) at rest, 2) immediately after an exercise bout consisting of 30 maximal voluntary knee extensions of constant angular velocity (3.14 rad/s), and 3) 60 s after termination of exercise. Creatine phosphate (CP) content was analyzed in pools of freeze-dried fast-twitch (FT) and slow-twitch (ST) muscle fiber fragments, and ATP, CP, creatine, and lactate content were assayed in mixed pools of FT and ST fibers. CP content at rest was 82.7 +/- 11.2 and 73.1 +/- 9.5 (SD) mmol/kg dry wt in FT and ST fibers (P less than 0.05). After exercise the corresponding values were 25.4 +/- 19.8 and 29.7 +/- 14.4 mmol/kg dry wt. After 60 s of recovery CP increased (P less than 0.01) to 41.3 +/- 12.6 and 49.6 +/- 11.7 mmol/kg dry wt in FT and ST fibers, respectively. CP content after recovery, relative to initial level, was higher in ST compared with FT fibers (P less than 0.05). ATP content decreased (P less than 0.05) and lactate content rose to 67.4 +/- 28.3 mmol/kg dry wt (P less than 0.001) in response to exercise. It is concluded that basal CP content is higher in FT fibers than in ST fibers. CP content also appears to be higher in ST fibers after a 60-s recovery period after maximal short-term exercise. These data are consistent with the different metabolic profiles of FT and ST fibers.  相似文献   

18.
Neural regulation of differentiation of rat skeletal muscle cell types   总被引:2,自引:0,他引:2  
Summary Three monoclonal antibodies (LM5, F2 and F39) to the fast class of myosin heavy chain (MHC) were used to study the effect of denervation on the differentiation of muscle cell types in some rat skeletal muscles. Antibody LM5 in immunocytochemical investigations did not stain any myotubes during early fetal development but presumptive fast muscle cells started to stain during later fetal development. Unlike antibody LM5, antibodies F2 and F39 stained all myotubes during fetal development. The suppression of fast myosin heavy chains recognised in presumptive slow muscle cells was observed within 1–2 days after birth with antibody F39 but not until 10–14 days after birth with antibody F2. The emergence of subsets of fast muscle fibre types in rat extensor digitorum longus (EDL) and tibialis anteri (TA) detectable by F39 and F2 antibodies was not observed until 2–3 weeks after birth. Denervation of developing muscles led to marked changes in the expression of myosins identified by these antibodies.  相似文献   

19.
We investigated selected histochemical and histometrical characteristics of the heterogeneous fiber types of rat skeletal muscle following long-term compensatory muscle growth. Sixty days following surgical removal of the synergistic gastrocnemius muscle, the compensated ipsilateral plantaris and soleus muscles and the corresponding control muscles from the contralateral leg were excised and stained histochemically for myofibrillar ATPase and DPNH-diaphorase activities. The number of fibers per cross-section was determined by a direct count from transverse sections taken from the midportion of the muscles. Fiber area was determined by direct planimetry. The plantaris and soleus muscles hypertrophied 103% and 45%, respectively, within 60 days. Compensatory hypertrophy of the plantaris muscle was accompanied by a significant but disproportionate increase in the cross-sectional areas of the three muscle fiber types. There was an approximate 4-fold increase in the number of slow-twitch-oxidative (SO) fibers observed per transverse section. The hypertrophied plantaris muscle exhibited a significantly greater number of fibers per cross-section (29%) than the respective control muscle. The compensated soleus muscle consisted of nearly 100% SO fibers compared to 83% for the control soleus muscle.  相似文献   

20.
Blood flows to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) fiber sections of the gastrocnemius-soleus-plantaris muscle group of sedentary and trained rats were determined using radiolabeled microspheres during the 1st and 10th min of in situ contractions at frequencies ranging from 7.5 to 90 tetani/min. Treadmill training increased the cytochrome c content of both FTW (6.0 +/- 0.13 nmol/g to 12.2 +/- 0.27) and FTR (22.2 +/- 0.32 to 26.7 +/- 0.25) muscle. Loss of tension, evident at 15 tetani/min and above, was less (P less than 0.001) in trained animals. Although steady-state blood flows (10th min) to FTR and STR fibers were not altered by training, initial flows (1st min) to the trained FTR section were greater (P less than 0.025). Overall initial flows to both red fiber types were excessively high at the easier contraction conditions, but subsequently declined to values more reflective of the expected energy demands. This time-dependent relative hyperemia was not found in either sedentary or trained FTW muscle. However, training increased the maximal blood flow in the FTW sections [60 +/- 3.2 (n = 36) vs. 88 +/- 5.2 ml X min X 100 g-1 (n = 36)]. This 40-50% increase in FTW blood flow would produce only a modest 10% increase in blood flow to a whole mixed-fiber muscle, since the flow capacity of the FTW muscle is only one third to one fourth that of FTR muscle. This overall increase in blood flow, however, is similar to changes in VO2max found in trained rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号