首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Ethanol administered in vivo or in vitro during incubation of brain slices was studied with respect to its effect on brain protein synthesis. In the in vivo series the rats were given a single intraperitoneal injection of ethanol 3 h before death. Slices of cerebral cortex and liver were incubated in isotonic saline media containing [3H]leucine. Amounts of free and protein-bound radioactivity were determined. Subcellular fractions and fractions enriched in neuronal perikarya and in glial cells were prepared from cortical slices subsequent to incubation, and the specific radioactivity determined for each cell type. The incorporation of [3H]leucine into brain proteins was inhibited while incorporation into liver proteins was stimulated in ethanol-treated rats. The levels of TCA-soluble radio-activity, however, did not differ between the ethanol group and the controls. In the fractionated material from cerebral cortex, the specific radioactivity in the neuronal fraction was unaffected by ethanol, while the radioactivity in the glial fraction was significantly depressed. In vitro administration of ethanol induced a non-linear response in both brain and liver, with depression of leucine incorporation into proteins of cerebral cortex at all concentrations used. When brain slices were exposed to ethanol in vitro, in concentrations corresponding to the in vivo experiments, a similar reduction of the leucine incorporation into the glial fraction was obtained. Incorporation of leucine into subcellular fractions from whole brain cortex was also investigated. The specific sensitivity of the glial fraction to ethanol is discussed in relation to the involvement of the different cell types with transport processes in the brain.  相似文献   

2.
Abstract— An assay in vitro utilizing [6?3H)glucose as precursor for synthesis of lipids, proteins, RNA and DNA was developed for incubated slices of rat cerebral cortex. The developmental changes in synthesis of macromolecules were followed during differentiation of rat cerebral cortex. The incorporation of glucose into lipids and proteins decreased 10-fold in incubated slices of cerebral cortex during progression from foetal to adult ages. In contrast, the specific radioactivities of RNA and DNA in incubated slices increased from the values at 3 days prepartum to peaks at 2–4 weeks postpartum.  相似文献   

3.
  • 1 γ-Hexachlorocyclohexane inhibits the ACh-stimulated synthesis of phosphatidylinositol in guinea pig cerebral cortex slices, as measured either by the incorporation of [2-3H]inositol or of 32P. Phosphatidylinositol synthesis in the control slices is not inhibited.
  • 2 The synthesis of phosphatidylinositol from CDP-diglyceride in cerebral cortex microsomal preparations is inhibited by γ-hexachlorocyclohexane. The incorporation of [2-3H]inositol into lipid in the absence of added cytidine nucleotide in these preparations is not inhibited.
  • 3 δ-Hexachlorocyclohexane profoundly inhibits phosphatide synthesis and phosphate metabolism in cerebral cortex slices both in the presence and absence of ACh. This isomer also inhibits the exchange reaction for the incorporation of [2-3H]inositol into lipid in the microsomal preparations.
  • 4 α-, and β-Hexachlorocyclohexanes do not inhibit either ACh-stimulated or control synthesis of phosphatidylinositol in cerebral cortex slices; nor do they inhibit the exchange reaction for [2-3H]inositol incorporation into lipid in the microsomal preparations.
  • 5 The specific effects of γ-hexachlorocyclohexane are taken as providing evidence that ACh-stimulated phosphatidylinositol synthesis in cerebral cortex slices probably involves the CDP-diglyceride pathway. The possibility is discussed that the primary action of ACh in this system is to cause an increased activity of diglyceride kinase to provide phosphatidic acid for this pathway.
  相似文献   

4.
Pinealectomy of rats resulted in significant depression of benzodiazepine receptors (assessed by [3H]flunitrazepam binding) in cerebral cortex 3–14 days after surgery without affecting their affinity significantly. A single s.c. injection of melatonin (800 μg/kg body wt) restored the depressed brain benzodiazepine receptor sites. Single melatonin injections (up to 1600 μg/kg) to intact rats did not affect brain benzodiazepine binding when injected at either morning or evening hours. Daily melatonin treatment to intact rats for 5 days augmented benzodiazepine receptor density in brain (morning injections) or its dissociation constant (evening injections). Melatonin added in vitro to rat cerebral cortex membranes only slightly depressed [3H]flunitrazepam binding at 100 μM concentrations. These results point out a link between pineal activity and benzodiazepine receptor function in rats. They also indicate that pharmacological doses of melatonin affect benzodiazepine binding sites in rat cerebral cortex.  相似文献   

5.
Morphine (10?6–10?5M) causes an increase in incorporation of [3H]valine into soluble proteins during 4 hr in rat brain cortical slices, liver slices and cultivated astroglial cells. The effects are dose-dependent. They are neither cell specific nor strictly related to classical opiate receptors. Pulse-labeling with [3H]valine for 60 min after incubation in 10?6–10?5M morphine, resolves time-dependent changes in incorporation, with both increases and decreases in protein metabolism.  相似文献   

6.
Rat cerebral cortex slices were incubated in vitro with [3H]dopamine (DA) or [3H]noradrenaline (NA) (10?7M), superfused by fresh buffer and stimulated by an electric field. The stimulation-induced overflow of [3H]DA and [3H]NA was determined. In slices from untreated rats about 16 ng [3H]NA/g tissue was formed from [3H]DA, corresponding to about 5 per cent of the endogenous NA concentration. Stimulation markedly enhanced the overflow of [3H]NA. The [3H]NA newly formed from [3H]DA was overflowing to a greater extent than [3H]NA previously taken up from the incubation medium, indicating a preferential release of newly synthesized transmitter. The stimulation-induced overflow of [3H]DA and [3H]NA was increased in slices of rats pretreated with a tyrosine hydroxylase inhibitor (H44/68). It seems that depletion of the endogenous NA stores of central NA neurons by tyrosine hydroxylase inhibition makes the [3H]cate-cholamines more available for release. Pretreatment of the rats with the DA-β-hydroxylase inhibitors FLA63 or FLA69 considerably diminished the formation of [3H]NA from [3H]DA. Stimulation markedly enhanced the overflow of [3H]DA indicating that DA can act as a ‘false transmitter’ in central NA neurons after DA-β-hydroxylase inhibition.  相似文献   

7.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

8.
Posttranslational modification of proteins by arginine and lysine has been demonstrated in crude extracts of vertebrate nerves and brain but not in intact cells. In the present experiments we have exploited the fact that Arg is added posttranslationally only at the N-terminus of target proteins, to demonstrate these reactions in intact cells of sciatic nerves and embryonic brains of rats. Sciatic nerves were crushed in anaesthesized rats and 2 hrs later segments of nerve, including the site of the crush, were removed and incubated in media containing [3H]Arg. Incorporation of [3H]Arg into total proteins was analyzed by acid precipitation and the presence of label at the N-terminus was determined by a modification of the Edman degradation procedure. Approximately 25% of protein bound [3H]Arg was released from the N-terminus by the Edman reaction indicating that it was added posttranslationally rather than through protein synthesis. N-terminal labeling was not detectable in nerves not crushed prior to explant and incubation. Slices of embryonic day 20 visual cortex, when incubated under similar conditions as injured sciatic nerves, also showed approximately 25% of the protein incorporated [3H]Arg at the N-terminus, while arginylation was not detectable in adult rat brain slices. Since Lys is not added posttranslationally to the N-terminus, we have attempted to observe lysylation of proteins in intact cells by using cycloheximide (Cx) to block protein synthesis without interfering with protein modification. The posttranslational incorporation of Arg/Lys into proteins was found to be insensitive to up to 2.0 mM Cx in tissue extracts (in vitro). However, in intact cells, doses as low as 10 uM Cx completely inhibited the incorporation of [3H]Arg/Lys into proteins. One uM Cx allowed for some incorporation of [3H]Arg/Lys into protein and approximately 40% of the Cx insensitive Arg was incorporated into the N-terminal. These results show that in vivo but not in vitro, Cx can block protein modification, suggesting that either in intact cells protein modification requires protein synthesis, or that Cx has effects other than as an inhibitor of protein synthesis on cells in culture, effects that it does not have on the partially purified components of the reaction.  相似文献   

9.
On homogenization of rat cerebral cortex slices previously incubated with [3H] GABA or [14C]GABA for 5 or 30 min, respectively, particles were recovered in P2 fractions which exhibited similar buoyant density, but different sedimentation velocity on linear sucrose density gradient centrifugation. The K+-evoked release of [3H]GABA from particles isolated from slices previously incubated for 5 min with [3H]GABA was increased in the presence of exogenous Ca2+. In contrast, the K+-evoked release from particles isolated from slices previously incubated for 30 min with [3H]GABA, was not influenced by the presence of exogenous Ca2+.These results suggest that, depending on the incubation time of slices, exogenously applied GABA can be detected in differnnt pools. These pools not only seem to differ in their Ca2+ dependency of K+-evoked release but also in their subcellular localization.  相似文献   

10.
The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.  相似文献   

11.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain.  相似文献   

12.
The biosynthesis of glucagon in perfused rat pancreas   总被引:4,自引:3,他引:1  
The biosynthesis of glucagon was studied by using the recirculated, isolated perfused rat pancreas. [3H]Tryptophan was initially incorporated into acid–ethanol-extractable protein, which on gel filtration was eluted with a molecular weight of about 9000 and contained a small amount of glucagon immunoreactivity. With longer incubation [3H]tryptophan incorporation into a second peak was obtained in an identical position with that of the majority of rat glucagon immunoreactivity. This peak of labelled protein exhibited migration characteristics on polyacrylamide-gel electrophoresis identical with those of rat glucagon and was identified as newly synthesized glucagon by demonstration of specific binding and dissociation behaviour with glucagon antibodies. The incorporation of [3H]tryptophan into acid–ethanol-extractable protein was inhibited by cycloheximide. High concentrations of glucose increased [3H]tryptophan incorporation into high-molecular-weight protein but decreased incorporation into proteins smaller than cytochrome c. The pattern of [3H]leucine incorporation into protein was similar to that of [3H]tryptophan.  相似文献   

13.
Tryptophan and phenylalanine transport in rat cerebral cortex slices was studied in sodium-free media and during influx and efflux of sodium ions. Choline as a substitute for sodium in incubation media increased efflux and decreased influx of tryptophan and phenylalanine. Exchange of intracellular [3H]tryptophan and [3H]phenylalanine with extracellular unlabeled histidine, phenylalanine, and tryptophan was sodium-independent. Efflux of sodium ions from the slices had no immediate effects on phenylalanine and tryptophan efflux, but influx decreased. Influx of sodium into the sodium-depleted slices provoked a transient increase in tryptophan and phenylalanine efflux and also enhanced influx. The results are interpreted to indicate that sodium ions may possibly affect the function of the primary transport sites for aromatic amino acids at cerebral membranes by controlling the orientation of their reactive sites towards the intracellular and extracellular sides, rather than by being directly involved in the binding of amino acids to the carriers.  相似文献   

14.
Abstract

The effect of various detergents treatment on the specific binding of [3H]PK 11195 (2nM) to peripheral-type benzodiazepine binding sites (PBS) in calf and rat kidney, adrenal gland, and cerebral cortex membranes was studied. At a concentration of 0.025%, Triton X-100 increased [3H]PK 11195 specific binding to calf kidney, adrenal gland, and cerebral cortex membranes by 20–40%. At the same concentration, Triton X-100 scarcely affected specific binding of [3H]PK 11195 to rat cerebral cortex but decreased binding to rat kidney and adranal gland membranes by 20–30%. At a concentration of 0.05% of Triton X-100, [3H]PK 11195 specific binding to calf kidney, adrenal gland, and cerebral cortex membranes was increased by 10–20%; whereas [3H]PK 11195 specific binding to rat kidney, adrenal gland, and cerebral cortex membranes was decreased by more than 40%. The increase in [3H]PK 11195 specific binding to calf kidney membranes following Triton X-100 (0.05%) treatment was apparently due to an increase in the binding affinity of PBS, since the density remained unaltered; whereas, the decrease in [3H]PK 11195 specific binding to rat kidney membranes was due to a decrease in both binding affinity and density of PBS. On the other hand, the detergents 3- [(3- cholamidopropyl)- dimethylammonio] - 1 - propane sulfonate (CHAPS), Tween 20, deoxycholic acid, and digitonin have a similar effect on [3H]PK 11195 specific binding to PBS in both calf and rat kidney membranes.  相似文献   

15.
Isolated rat adipocytes were incubated with 15 nM [3-3H]glucose or 100 nM [U-14C]glucose with or without insulin and in the absence or presence of unlabelled glucose. Following a 2 h incubation with 15 nM [3-3H]glucose, about two thirds of the cell-associated 3H-labelled metabolic products were hydrophilic largely anionic intermediates and about one third was lipids. The equivalent values were 40 and 60%, respectively, when using 100 nM [U-14C]glucose. The only 14C-labelled metabolite escaping to the incubation medium was 14CO2, which accounted for about 15% of the rate of metabolism. Therefore, the rate of incorporation of 100 nM [U-14C]glucose into the cell-associated metabolites was quite a good measure of its net influx rate. The conversion of the two tracers to the sum of the metabolic products in cells treated with a maximally stimulating insulin concentration remained constant with glucose concentrations up to about 100 μM and then decreased progressively. The incorporation of radioactivity into the different metabolites varied markedly over the glucose concentration range 0–100 μM, presumably due to the saturation of different metabolic pools at different glucose concentrations. This variation was much less in cells not stimulated with insulin. Consequently, the maximal effect of insulin on the incorporation of the tracers into a given metabolite (e.g., labelled lipids) varied over the entire glucose concentration range. In addition, the apparent sensitivity (ED50) with respect to the incorporation into a given metabolite was also dependent on the glucose concentration.  相似文献   

16.
1. A method was devised for the determination of the specific radioactivity of the acetyl moiety of acetylcholine synthesized from various (14)C-labelled substrates. 2. The precursor for the acetyl moiety of acetylcholine was studied in slices of striatum and cerebral cortex from rat and guinea-pig brain. Incorporation of radioactivity into acetylcholine was determined after incubating the slices in the presence of [2-(14)C]acetate, [(14)C]bicarbonate, [1,5-(14)C]citrate, dl-[1- or 5-(14)C]glutamate or [1- or 2-(14)C]pyruvate. 3. After incubation for 1h, acetylcholine was accumulated significantly in both striatum slices (4.1nmol/mg of protein) and cerebral-cortex slices (0.57nmol/mg of protein) from the rat. Final concentrations were about 11 and 5 times respectively the initial values. 4. With slices from rat striatum, rat cerebral cortex and guinea-pig cerebral cortex, the specific radioactivity of acetylcholine derived from [2-(14)C]pyruvate was very high, reaching approx. 30, 20 and 6% respectively of the initial specific radioactivity of added pyruvate in the medium. With the striatum slices this high value was reached after incubation for 15min. Incorporation of radioactivity from [2-(14)C]acetate was only 1.25, 5.3 and 19.7% of that from [2-(14)C]pyruvate in rat striatum, rat cerebral-cortex and guinea-pig cerebral-cortex slices respectively. A small but definite incorporation was found from [5-(14)C]glutamate. No incorporation was found from the other substrates. The findings suggest that pyruvate is the most important precursor for the synthesis of the acetyl moiety of acetylcholine in brain slices. 5. The specific radioactivity of acetylcholine relative to that of citrate when [2-(14)C]pyruvate was used compared with that obtained when [2-(14)C]acetate was used. A marked difference was found in all slices, suggesting metabolic compartmentation of the acetyl-CoA pool.  相似文献   

17.
The release of [3H]GABA induced by elevated extracellular potassium (K)o, from thin rat brain cortex slices, has been compared with that of [3H]noradrenaline ([3H]NA), released by the same procedures, both from normal slices, and from slices pre-treated with reserpine and nialamide, [3H]NA being predominantly a vesicular component in the former situation, and a soluble substance in the latter one. 46 mM-(K)o released considerably more [3H]NA from normal than from drug-treated slices, while the release of GABA was about two thirds of the latter. When 4min ‘pulses’ of increasing concentrations of potassium were applied, it was observed that the release of GABA and of [3H]NA from drug-treated slices increased in proportion to (K)o, up to 36-46 mM and then declined considerably with higher (K)o. The dependency of potassium-induced release on the concentration of calcium in the medium, indicated that release of [3H]NA from normal slices was proportional to calcium up to 1.5-2 mM, while that of [3H]NA from drug-treated slices increased up to 0.5 mM-Calcium, and then declined with higher concentrations. GABA release also increased up to 0.5 mM-calcium, but no further changes were observed at higher concentrations. The calcium antagonist D-600 inhibited high (K)o-induced release of [3H]NA from normal slices to a greater extent than that of [3H]GABA or of [3H]NA from drug-treated slices. These results, in which elevated (K)o-induced release of [3H]GABA resembles considerably that of soluble NA, but differs from that of NA present in synaptic vesicles, suggest that release of [3H]GABA also occurs from the soluble cytoplasmic compartment, and that the partial calcium requirement that is found is unrelated to that of transmitter secretion. These findings are also a further indication of the lack of specificity of elevated (K)o as a stimulus for inducing transmitter secretions.  相似文献   

18.
Rate of Protein Glycosylation in Rat Cerebral Cortex   总被引:1,自引:1,他引:0  
Quantitative aspects of the pathway leading to the formation of asparagine-linked oligosaccharides were investigated in rat cerebral cortex. Steady-state labeling conditions were achieved with [2-3H]mannose by developing a micromethod of incubation of cerebral cortex particles in the presence of physiological concentrations of glucose (1 g/L). The rate of [2-3H]mannose uptake and incorporation into protein was markedly affected when the concentration of glucose was lowered to 0.05 g/L. It was found that in the presence of glucose (1 g/L), a minor fraction of the utilized [2-3H]mannose is used in glycoprotein formation and the remaining labeled sugar enters the other major metabolic pathways, generating tritiated water which is rapidly exchanged with that of the medium. Under these conditions, the intracellular isotopic dilution of [2-3H]mannose-labeled precursors was calculated to be about 11.5-fold. These data allow determination of the rate of the net transfer of mannose into proteins. Comparison of the rate of glycosylation between 5- and 30-day-old cerebral cortex revealed a striking difference: 2.1 and 0.3 ng of mannose/mg protein/h, respectively.  相似文献   

19.
Previously it has been shown that radiolabelled histamine is taken up by brain slices and may subsequently be released by depolarizing stimuli in a calcium-dependent manner, indicating the involvement of neurons in uptake and release of histamine.The present study demonstrates that after incubation of brain slices with low (nM) concentrations of [3H]histamine the amine may be taken up by (and released from) dopaminergic and serotonergic neurons (nerve terminals). Thus 6-hydroxydopamine- and 5,7-dihydroxytryptamine-induced lesions not only reduced the uptake of [3H]dopamine (in striatal slices) and [3H]serotonin (in hippocampal slices), but also, though to a lesser extent, that of [3H]histamine. Immunocytochemical findings revealed that the neurotoxins did not visibly affect histaminergic neurons. Lesioning of noradrenergic neurons appeared not to alter significantly the uptake of [3H]histamine. Further, various drugs acting on either catecholamine-, serotonin- or opioid-receptors and known to cause presynaptic inhibition of the release of [3H]dopamine or [3H]wrotonin from striatal or hippocampal slices also inhibited [3H]histamine release.It is concluded that incubation of brain slices with low concentrations of [3H]histamine does not result in a selective labelling of histaminergic neurons. The possibility that, unlike other monoamines, histamine is not subject to high-affinity uptake by the nerve terminals from which it was released, is discussed.  相似文献   

20.
The spontaneous and veratridine-evoked release of radioactive d-aspartic acid, previously taken up by rat substantia nigra slices, was studied by using a superfusion system. Veratridine (25 μM, 1 min) markedly produced a 14-fold increase in d-[3H]aspartic acid release from nigral slices. Omission of Ca2+ and increasing Mg2+ concentration to 12 mM in the superfusion medium did substantially block d-[3H]aspartate release induced by veratridine depolarization. Nevertheless, veratridine was able to evoke [3H]amino acid release which seemed to be, at least, 30% Ca2+-independent. Additional experiments showed that tetrodotoxin (0.01–0.1 μM), a blocker of voltage-dependent Na+ channels, totally abolished veratridine-evoked release of d-[3H]aspartate from nigral slices.Lesion studies were performed in order to learn about the nature of the neuronal compartment in the substantia nigra upon which veratridine-depolarization acted to induce d-[3H]aspartate release. Unilateral ablation of the fronto-parietal cortex was accompanied by a significant decrease in the accumulation of nigral d-[3H]aspartate and by a large loss from ipsilateral nigral slices in d-[3H]aspartate release evoked by veratridine. In contrast, both the accumulation and veratridine-evoked release of [3H]dopamine, remained unchanged in the ipsilateral substantia nigra slices to the lesion.The findings reported suggest that d-[3H]aspartic acid may be taken up and then released, in a Ca2+-dependent manner, by nerve terminals located in the substantia nigra. In addition, the results shown provide support to the view that l-glutamate and/or l-aspartate may act as neurotransmitters at the cortico-nigral neuronal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号