首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental autoimmune uveoretinitis (EAU) is a predominantly T cell-mediated autoimmune disease induced in susceptible animals by active immunization with human or bovine retinal S-Ag or by passive transfer of activated S-Ag or peptide-specific CD4+ T cells. During the course of studies aimed at the identification of T cell and B cell recognition sites in bovine and human S-Ag, a new potent uveitogenic region, located near the carboxy terminus of the molecule, was identified and characterized. Analysis of several synthetic peptides from this region showed that a 14 amino acid residue peptide, BSAg339-352, was highly uveitogenic when injected with adjuvants into Lewis rats. A uveitogenic T cell line, R737, was raised by in vitro selection of lymphocytes from animals immunized with peptide BSAg333-352. Northern blot analysis of mRNA from the R737 T cell line was positive for the rat homologs of murine V beta 8 and V alpha 2 T cell receptor gene probes. Whereas peptide BSAg339-352 defined the pathogenic site, nonpathogenic, proliferative sites were found in close physical association. This region is immediately adjacent to previously characterized pathogenic and proliferative sites contained in residues BSAg352-364. These results, as well as our previous observations, show S-Ag to be a complex molecule with several highly conserved amino acid sequences that can elicit pathogenic T cells with restricted T cell receptor V gene usage capable of active and passive elicitation of experimental autoimmune uveoretinitis.  相似文献   

2.
Previous analyses of T cell recognition sites on immunopathogenic neural autoantigens have demonstrated, using LEW rats, the functional dissociation of in vitro proliferative responses and the ability to actively induce autoimmune diseases. In experimental autoimmune uveoretinitis, immunization of LEW rats with bovine retinal S-Ag reveals the presence of three immunodominant T cell recognition sites located in regions containing sequence differences between bovine and rat S-Ag. Immune responses of LEW rats to self (rat) and nonself (bovine and human) peptide homologues representing these three sites were compared. The immunodominant sequences of heterologous S-Ag were found to predict new pathogenic T cell recognition sites in the corresponding autologous rat sequence. Furthermore, in vitro proliferative responses to the pathogenic autologous sequences are dramatically diminished relative to the responses of lymphocytes raised to the non-self homologues. A pathogenic T cell line, R858, efficiently transferred disease, but was unresponsive to the autologous S-Ag peptide in proliferation assays. However, responses to autologous peptides were readily detected using nonirradiated splenic APC. Detection of responses to non-self peptides was independent of this radiosensitive Ag-presenting activity. The lack of in vitro proliferative responses to pathogenic autologous sequences by T cells bearing self-specific receptors, contrasted with the strong proliferation induced by non-self peptide homologues, suggests a mechanism of unresponsiveness to self.  相似文献   

3.
Experimental autoimmune uveoretinitis (EAU) is a predominantly CD4+ T cell-mediated autoimmune inflammatory disease of the retina and uveal tract of the eye and the pineal gland. S-antigen, a protein found in retinal photoreceptor cells and pinealocytes, is a potent agent for the induction of EAU in susceptible species and strains. In order to identify the T cell recognition sites of S-antigen responsible for its uveitogenicity and proliferative responses, cyanogen bromide (CB) fragments as well as synthetic peptides were used to test the proliferative responses of two uveitogenic T cell lines, R9 and R17, prepared against native bovine and human S-antigen, respectively. Two nonoverlapping synthetic peptides which are known to actively induce EAU, amino acid residues 286-297 and 303-314 of the bovine sequence, were unable to induce proliferative responses in either S-antigen-specific T cell line. However, both of these sites were adjacent to synthetic peptides, residues 273-292 and 317-328, respectively, which were unable to actively induce EAU, but elicited strong proliferative responses from T cell lines raised to bovine and human S-antigen. Repeated in vitro selection of the R9 T cell line with a synthetic peptide containing one of these proliferative sites, residues 317-328, gave rise to a transiently uveitogenic T cell line. Several species-specific T cell epitopes were identified, but none of these were found to be involved in a uveitogenic response. Our results indicate that spatially separated and distinct T cell epitopes are present in S-antigen which are responsible for the active induction of EAU, lymphocyte proliferation, and the ability to adoptively transfer EAU.  相似文献   

4.
Experimental autoimmune uveitis (EAU) and experimental autoimmune pinealitis (EAP) are CD4+ T cell-mediated inflammatory diseases of the uveal tract and retina of the eye and of the pineal gland. EAU and EAP can be induced by several retinal autoantigens including S-antigen (S-Ag) and interphotoreceptor retinoid binding protein (IRBP). In this study we investigated the effect of intravenous administration of S-Ag and IRBP coupled to syngeneic spleen cells on the development of EAU and EAP. Injection of S-Ag or IRBP coupled to spleen cells 5 days prior to immunization with native S-Ag or IRBP, respectively, was effective in preventing the induction of EAU and EAP in LEW rats. Conversely, LEW rats receiving S-Ag-coupled spleen cells and challenged with IRBP or LEW rats receiving IRBP-coupled spleen cells and challenged with S-Ag developed a severe EAU within 10 days to 2 weeks following immunization, as did all control animals receiving sham-coupled spleen cells and challenged with the two retinal antigens. The results show that the administration of retinal autoantigens coupled to spleen cells effectively protects against the development of EAU when animals are subsequently challenged with the tolerizing antigen but not when challenged with another unrelated pathogenic retinal autoantigen.  相似文献   

5.
The restricted usage of particular T cell receptor beta chain genes in autoimmune disease was studied in LEW rats using T cell hybridomas specific for an immunodominant sequence of bovine retinal S-Ag, which induces experimental autoimmune uveoretinitis. T cell hybridomas from a pathogenic T cell line, R858, specific for residues 273-289 of bovine retinal S-Ag were analyzed in order to determine the contribution of their TCR V beta to self specificity as determined by recognition of the pathogenic epitope represented in the autologous rat S-Ag sequence. Six different, functional TCR rearrangements were expressed by the panel of hybridomas, including two distinct V beta 8.2 rearrangements and functional V beta 10, V beta 14, V beta 19 rearrangements, and an unidentified V beta gene. All hybridomas were Ag specific and reacted both to nonself-peptide derivatives as well as to self-peptide homologues. No unique pattern of peptide reactivity distinguished V beta 8.2+ hybridomas from V beta 8.2- hybridomas; all of the hybridomas were most reactive to the nonself sequences and reacted to self peptide with one to three orders of magnitude less sensitivity. However, all V beta 8.2+ hybridomas were much better responders overall and were activated by lower concentrations of all peptides than were V beta 8.2- hybridomas. Although V beta 8.2 gene usage is strongly associated with autoimmune pathology, these data show that in LEW rats several different TCR V beta genes are utilized in response to a short pathogenic sequence of this autoantigen and show that V beta 8.2 receptors are not uniquely self-reactive. However, the enhanced reactivity to Ag of V beta 8.2+ hybridomas relative to V beta 8.2- hybridomas specific for the same peptide may help explain the close association of V beta 8.2 TCR gene usage with pathogenicity found in autoimmune disease models.  相似文献   

6.
S-antigen is a well-characterized retinal protein that is highly pathogenic for the induction of experimental autoimmune uveitis (EAU), a severe inflammatory disease of the eye and the pineal gland. EAU was observed following the immunization of Lewis rats with various doses (50 to 200 micrograms) of a small synthetic peptide, peptide N (22 amino acids in length), which corresponds to amino acid positions 281 to 302 in bovine S-antigen. Peptide N consistently induced an EAU that was identical to the disease caused by native S-antigen. Clinically, the disease that developed in the eye was characterized by iris and pericorneal hyperemia, followed by inflammatory exudates in the anterior chamber and vitreous. Histopathologically, a severe inflammatory response was observed that resulted in the complete destruction of the photoreceptor cell layer of the retina. In addition, animals with ocular inflammatory disease had an associated pinealitis characterized by a lymphocytic infiltration of the pineal gland. Furthermore, draining lymph node cells of rats immunized with peptide N showed strong in vitro proliferative responses toward peptide N as measured by [3H]thymidine uptake. Our results indicate that several synthetic peptides, which correspond to the amino acid sequence of bovine S-antigen, are capable of inducing an EAU and, as such, suggest that multiple uveitopathogenic sites may be present in the molecule.  相似文献   

7.
T cell lines mediating experimental autoimmune uveoretinitis (EAU) in the rat   总被引:22,自引:0,他引:22  
Long-term S-antigen (S-Ag)-specific T lymphocyte lines were derived from the lymph nodes of immunized Lewis rats that had been pretreated with low-dose cyclophosphamide. The protocol consisted of functional selection by alternating cycles of stimulation with S-Ag presented on syngeneic accessory cells and proliferation in IL 2-containing spleen-conditioned medium, coupled with early phenotypic selection for cells bearing the helper/inducer membrane marker (W3/25), by panning on antibody-coated plastic dishes. This protocol consistently resulted in the rapid generation of in vivo functional cell lines capable of mediating experimental autoimmune uveoretinitis (EAU) when transferred into naive rats at 5 to 10 X 10(6) cells/rat systemically or 1 to 2 X 10(6) cells/rat intravitreally. The disease appeared within 6 to 8 days, usually with minimal anterior chamber involvement, and was often unilateral. Pathologic changes resembled those seen in EAU induced by active immunization. The disease could be transferred without concomitant formation of serum antibodies. The uveitogenic line cells were negative for Ia antigen and positive for the W3/25 membrane marker, which appeared to be stable in long-term culture. They proliferated vigorously in vitro and produced IL 2 in response to S-Ag or Con A, but not to unrelated antigens. The establishment of uveitogenic T helper lymphocyte lines will permit the analysis of the cellular mechanisms involved in EAU in a more defined system than has been available.  相似文献   

8.
Antigen-directed retention of an autoimmune T-cell line   总被引:1,自引:0,他引:1  
We have used the T-cell-mediated, organ-specific autoimmune disease model of experimental autoimmune uveoretinitis (EAU) in the Lewis rat to study antigen-directed retention of autoimmune T helper cells in the target organ. We have compared the migration into the eye of two T-helper-cell lines: ThS, specific for retinal S antigen (S-Ag), that is uveitogenic to normal syngenic recipients, and ThP, specific to purified protein derivative of tuberculin (PPD), that is non-uveitogenic. The retention of adoptively transferred 51Cr-labeled ThS and ThP was studied up to the stage of disease induction in unprimed animals, during the acute stage of EAU induced by active immunization with S-Ag, and during the acute stage of a uveitis induced by a nonocular antigen (bovine serum albumin, BSA). Low numbers of cells from the two lymphocyte lines were detected in the eyes of unprimed animals, with no obvious increase of ThS over ThP, despite induction of EAU in the recipient animals by the injected ThS cells. In S-Ag-induced EAU many more ThS accumulated in the eye than ThP. In BSA uveitis both T-cell lines accumulated in the eye to the same extent, but more than in control noninflamed eyes. These results demonstrate the presence of increased antigen-specific retention of circulating autoimmune T helper lymphocytes during the acute stage of an ocular antigen-specific, but not ocular antigen nonspecific, inflammation. Since detectable accumulation of ThS cells in the eye was not a prerequisite for the induction of EAU, this phenomenon appears to be the result, rather than the cause, of the autoimmune process.  相似文献   

9.
Experimental autoimmune uveitis (EAU) is caused by the immunization of microgram amounts of a soluble retinal protein, known as S-antigen, in susceptible animal strains including primates. The disease serves as an animal model of ocular inflammation. We induced EAU and pinealitis in Lewis rats with small synthetic peptides, corresponding to the amino acid sequence in Escherichia coli protein, which contains six consecutive amino acids identical to a uveitopathogenic site in human S-antigen (peptide M). EAU and pinealitis induced in rats by synthetic peptide derived from E. coli was indistinguishable from those induced by native S-antigen or other uveitopathogenic synthetic peptides corresponding to the amino acid sequence of S-antigen. Furthermore, lymph node cells from animals immunized with either peptide M or peptide derived from E. coli protein showed significant proliferation in the presence of either peptide when tested in vitro for lymphocyte mitogenesis using [3H]thymidine. Thus, molecular mimicry, a process by which an immune response directed against a nonself protein cross-reacts with a normal host protein, may play a role in autoimmunity.  相似文献   

10.
Pertussis toxin (PTX) has been used for many years as an adjuvant that promotes development of tissue-specific experimental autoimmune diseases such as experimental autoimmune encephalomyelitis, experimental autoimmune uveitis (EAU), and others. Enhancement of vascular permeability and of Th1 responses have been implicated in this effect. Here we report a surprising observation that, in a primed system, PTX can completely block the development of EAU. Disease was induced in B10.RIII mice by adoptive transfer of uveitogenic T cells, or by immunization with a uveitogenic peptide. A single injection of PTX concurrently with infusion of the uveitogenic T cells, or two injections 7 and 10 days after active immunization, completely blocked development of EAU. EAU also was prevented by a 1-h incubation in vitro of the uveitogenic T cells with PTX before infusing them into recipients. Uveitogenic T cells treated with PTX in vitro and lymphoid cells from mice treated with PTX in vivo failed to migrate to chemokines in a standard chemotaxis assay. Neither the isolated B-oligomer subunit of PTX that lacks ADP ribosyltransferase activity nor the related cholera toxin that ADP-ribosylates G(s) (but not G(i)) proteins blocked EAU induction or migration to chemokines. We conclude that PTX present at the time of cell migration to the target organ prevents EAU, and propose that it does so at least in part by disrupting signaling through G(i) protein-coupled receptors. Thus, the net effect of PTX on autoimmune disease would represent an integration of enhancing and inhibitory effects.  相似文献   

11.
We have previously reported that IL-17(+) interphotoreceptor retinoid-binding protein (IRBP) 161-180-specific T cells have a strong pathogenic effect in experimental autoimmune uveitis (EAU) induced in B10RIII mice; however, this pathogenic activity is not solely attributable to the major cytokine, IL-17, produced by these cells. To determine whether other cytokines produced by Th17 cells show a stronger association with their pathogenic activity, we studied the role of IL-22 in EAU. IL-22 is one of the major cytokines produced by these cells. Our results showed that administration of small doses of IL-22 to EAU-susceptible mice significantly reduced the severity of EAU. In addition, mice treated with IL-22 generated decreased numbers of IFN-γ(+) and IL-17(+) uveitogenic T cells, but increased numbers of Foxp3(+) regulatory T cells. Mechanistic studies showed that the effect of the injected IL-22 was on CD11b(+) APCs, which expressed increased levels of IL-22R during induction of disease following immunization with uveitogenic Ag. In vitro IL-22 treatment of CD11b(+) APCs collected from Ag-primed mice resulted in increased expression of programmed death ligand-1 and the production of increased amounts of IL-10 and TGF-β. Moreover, IL-22-treated CD11b(+) APCs caused IRBP161-180-specific T cells to lose their uveitogenic activity and acquire immunosuppressive activity, which suppressed the induction of EAU by additional pathogenic IRBP161-180-specific effector T cells.  相似文献   

12.
S-Antigen (S-Ag) is a well characterized 45,000 m.w. photoreceptor cell protein. When injected into susceptible animal species, including primates, it induces an experimental autoimmune uveitis, a predominantly T cell-mediated autoimmune disease of the retina and uveal tract of the eye, and of the pineal gland. In this study we found an amino acid sequence homology between a uveitopathogenic site of S-Ag, several viral proteins and one additional nonviral protein. An experimental autoimmune uveitis and pinealitis was induced in Lewis rats with these different synthetic peptides, corresponding to the amino sequence of hepatitis B virus DNA polymerase, gag-pol polyprotein of Baboon endogenous virus and gag-pol polyprotein of AKV murine leukemia virus and potato proteinase inhibitor IIa, which contain three or more consecutive amino acids identical to peptide M in S-Ag. Lymph node cells from rats immunized with either peptide M or the different synthetic peptides showed a significant degree of cross-reaction. Mononuclear cells from monkeys (Macaca fascicularis) immunized with peptide M also showed significant proliferation when incubated with either peptide M or synthetic peptides as measured by in vitro lymphocyte mitogenesis assay using [3H]TdR. Based on our findings we conclude that a viral infection may sensitize the mononuclear cells that can cross-react with self proteins by a mechanism termed molecular mimicry. Tissue injury from the resultant autoantigenic event can take place in the absence of the infectious virus that initiated the immune response.  相似文献   

13.
The oral administration of S-antigen fragment (a synthetic peptide designated as peptide M and known to be uveitopathogenic for rat, guinea pig, and monkey) to Lewis rats prior to challenge with an emulsion of peptide M and CFA resulted in either a total or partial suppression of experimental autoimmune uveitis (EAU), a T cell-mediated autoimmune disease studied as a model for human uveitis and experimental autoimmune pinealitis (EPA). Both the clinical and histopathologic manifestations of the disease were suppressed in a dose-dependent manner. Pinealitis associated with EAU was also suppressed by the oral administration of peptide M. Additionally, ingestion of a fragment of baker's yeast (Saccharomyces cerevisiae) histone H3, which has five consecutive amino acids identical to peptide M and which has been found to be uveitopathogenic in Lewis rats, induced tolerance to either peptide M or synthetic histone H3 peptide. In addition, the proliferative response to peptide M was inhibited in peptide M-fed rats. The suppression of EAU and in vitro lymphocyte proliferative responses to peptide M were observed to be antigen specific, since oral feeding of a control protein (BSA) exerted no suppressive effect. Furthermore, the T cells isolated from the spleen and lymph nodes of animals rendered tolerant by oral administration of peptide M can transfer protection against EAU adoptively. These results demonstrate that the oral administration of an autoantigen or its homologous peptide initiates an antigen-specific cellular mechanism which may ameliorate EAU.  相似文献   

14.
Myocarditis is a common cause of dilated cardiomyopathy leading to heart failure. Chronic stages of myocarditis may be initiated by autoimmune responses to exposed cardiac Ags after myocyte damage. Cardiac myosin, a heart autoantigen, induced experimental autoimmune myocarditis (EAM) in susceptible animals. Although cardiac myosin-induced myocarditis has been reported in Lewis rats, the main pathogenic epitope has not been identified. Using overlapping synthetic peptides of the S2 region of human cardiac myosin, we identified an amino acid sequence, S2-16 (residues 1052-1076), that induced severe myocarditis in Lewis rats. The myocarditic epitope was localized to a truncated S2-16 peptide (residues 1052-1073), which contained a sequence identical in human and rat cardiac myosin. The S2-16 peptide was not myocarditic for three other strains of rats, in which the lack of myocarditis was accompanied by the absence of strong S2-16-specific lymphocyte responses in vitro. For Lewis rats, S2-16 was characterized as a cryptic epitope of cardiac myosin because it did not recall lymphocyte and Ab responses after immunization with cardiac myosin. Lymphocytes from S2-16 immunized rats recognized not only S2-16, but also peptides in the S2-28 region. Furthermore, peptide S2-28 was the dominant epitope recognized by T cells from cardiac myosin immunized rats. S2-16 was presented by Lewis rat MHC class II molecules, and myocarditis induction was associated with an up-regulation of inflammatory cytokine production. S2-16-induced EAM provides a defined animal model to investigate mechanisms of EAM and modulation of immune responses to prevent autoimmune myocarditis.  相似文献   

15.
Experimental autoimmune uveitis (EAU) serves as an animal model of ocular inflammation. The disease is caused by the immunization of microgram amounts of a soluble retinal protein, designated S-antigen, in susceptible animal strains, including primates. We induced EAU and experimental autoimmune pinealitis (EAP) in Lewis rats with a small synthetic peptide corresponding to amino acid positions 106-121 in yeast histone H3. This peptide contains five consecutive amino acids identical to a uveitopathogenic site (peptide M) in human S-antigen. Lymph node or mononuclear cells from different species of animals immunized either with histone H3 or with peptide M showed significant cross-reaction as measured by in vitro lymphocyte mitogenesis assay using [3H]thymidine. Also, we adoptively transferred the EAU and EAP in naive rats by immune lymph node cells. These findings support the fact that selected bacterial, viral, or fungal proteins with amino acid sequence homologies to normal retinal proteins are uveitopathogenic and, as such, provide a basis for autoimmune inflammatory diseases.  相似文献   

16.
Interphotoreceptor retinoid-binding protein (IRBP), a retinal-specific Ag, induces experimental autoimmune uveitis in a variety of animals. We have previously shown that sequence 1169-1191 of bovine IRBP is the immunodominant epitope of this protein in Lewis rats and is highly immunogenic and uveitogenic in these rats. The active site of peptide 1169-1191 was determined by testing its truncated forms. The shortest peptide to be immunologically active was found to be 1182-1190 (WEGVGVVPD). To determine the role of individual residues of this sequence, we have tested the immunologic activities of nine analogs of peptide 1181-1191, in which each of residues 1182-1190 was substituted with alanine (A). The tested activities included the capacity to induce experimental autoimmune uveitis and cellular responses in immunized rats, as well as the capability to stimulate lymphocytes sensitized against IRBP or the parent peptide 1181-1191. Analogs that did not stimulate these lymphocytes were also tested for their capacity to competitively inhibit the proliferative response to 1181-1191. Analogs A(1184), A(1186), and A(1187) resembled 1181-1191 in their activities, whereas the other analogs exhibited remarkably reduced activities, with several patterns being noticed. Analog A(1182) was inactive in all tests. Analog A(1190) was very weakly uveitogenic and non-immunogenic, but it stimulated lymphocytes sensitized against IRBP or 1181-1191 when added at exceedingly high concentrations. Analogs A(1183) and A(1185) resembled A(1190) in being weakly uveitogenic and A(1185) was also found to be poorly immunogenic. In addition, relatively high concentrations of A(1183) and A(1185) were needed to stimulate lymphocytes sensitized against IRBP or 1181-1191. However, a different pattern of activities was exhibited by analogs A(1188) and A(1189). These peptides were uveitogenic and immunogenic, but failed to stimulate lymphocytes sensitized to IRBP or 1181-1191. Furthermore, A(1188) and A(1189), but not A(1182), also inhibited the response to 1181-1191 of a cell line specific toward this parent peptide. The data are interpreted to show that residues 1188 and 1189 are involved in the interaction of the peptide with the TCR, whereas residues 1182 and 1190 and, perhaps, 1183 and 1185, are pivotal for the binding of peptide 1181-1190 to the MHC molecules on APC.  相似文献   

17.
Experimental autoimmune uveoretinitis (EAU) is a T cell-mediated autoimmune disease of posterior uvea that closely resembles a human disease. The uveitogenic effector T cell has a Th1-like phenotype [high interferon-gamma (IFN-gamma), low interleukin-4 (IL-4)], and genetic susceptibility to EAU that is associated with an elevated Th1 response. Suppression of CD4+ Th1 cells for the treatment of autoimmune disease is an attractive potential therapeutic approach. Nitric oxide (NO) has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. In this study, we investigated the potential role of NO as an immunoregulator to alter Th1/Th2 cytokine production, as well as to inhibit the interphotoreceptor retinoid binding protein (IRBP)-induced EAU, a CD4+ Th1 cell-mediated autoimmune disease. Injection of IRBP (100 microg) into two footpads resulted in severe EAU. The beginning peak of the disease was days 12 to 15 after immunization. Oral treatment with molsidomine (MSDM), a NO donor, began 24 h before IRBP immunization to the end of the experiments, which resulted in a significant inhibition of the disease by clinical and histopathological criteria. When MSDM was administered until day 21, a complete reduction of incidence and severity of EAU was observed. To investigate the cytokine alterations from Th1 to Th2 cytokines by MSDM, the cytokines were assayed in a culture medium of IRBP-stimulated inguinal lymphocytes. IRBP-immunized rats secreted a high concentration of IFN-gamma and a low concentration of IL-10. In contrast, MSDM treatment enhanced IL-10 secretion and tended to decrease IFN-gamma secretion. In conclusion, we show that the administration of NO suppresses EAU by altering the Th1/Th2 balance of inflammatory immune responses. We suggest that NO may be useful in the therapeutic control of autoimmune uveitis.  相似文献   

18.
We have shown previously that immunization with bovine interphotoreceptor retinoid-binding protein (IRBP) induces in rats severe eye disease, experimental autoimmune uveoretinitis (EAU). This study examined the uveitogenic capacity of IRBP of another species, the monkey, and tested the cross-antigenicity between these two proteins by a battery of immunological assays. Monkey IRBP was found to be approximately 20 times less uveitogenic in Lewis rats than bovine IRBP. High levels of cross-reactivity between bovine and monkey IRBP were demonstrated by antibodies as measured by the enzyme-linked immunosorbent assay, and by the radiometric ear test of delayed-type hypersensitivity, by using rats immunized with either one of the IRBP. On the other hand, lymphocytes from these rats failed to detect the cross-reactivity between the two IRBP by the proliferation response in culture. Yet, such lymphocytes did recognize the nonimmunizing IRBP when activated in culture for acquiring the capacity to adoptively transfer EAU into naive recipients. The data are discussed with regard to the limited usefulness of the lymphocyte proliferation assay for detection of immunopathogenic processes and the role of cross-reacting antigens in initiation of autoimmune responses.  相似文献   

19.
Lewis rats immunized with myelin basic protein (MBP) developed experimental autoimmune encephalomyelitis (EAE) and associated anterior uveitis (AU). Although several cryptic epitopes of MBP have strong encephalitogenic and uveitogenic properties, the peptide corresponding to the MBP residues 1-20 was uniquely capable of inducing AU without EAE. In this study, we showed that acetylation of the N-terminal amino acid did not produce encephalitogenicity, did not enhance uveitogenicity, and did not improve T cell proliferation in Lewis rats. The cytokine production profile induced by MBP(1-20) immunization was consistent with a Th1 response. In MBP-injected rats and in peptide-injected rats, the frequency of the IFN-gamma-secreting cells in MBP(69-89)-stimulated T cells was significantly higher than the frequency of IFN-gamma-secreting cells in MBP(1-20)-stimulated T cells. However, similar numbers of IFN-gamma-producing specific cells were found in the eyes of MBP(69-89) and MBP(1-20) immunized rats. In these rats, the iris-infiltrating cells consisted of a much higher percentage of CD4(+) T cells expressing L-selectin (CD62L) than did those cells found in the spinal cord. The results demonstrate that MBP(1-20) is immunogenic and uveitogenic, although it induced only weak proliferation and weak Th1 reaction. The fact that T cells with the same specificity have different effects on target organs suggested that, in the eye and spinal cord, a distinct mechanism might mediate the recruitment of cells to these organs.  相似文献   

20.
Experimental autoimmune uveitis (EAU) induced by immunization of animals with retinal Ags is a model for human uveitis. The immunosuppressive cytokine IL-10 regulates EAU susceptibility and may be a factor in genetic resistance to EAU. To further elucidate the regulatory role of endogenous IL-10 in the mouse model of EAU, we examined transgenic (Tg) mice expressing IL-10 either in activated T cells (inducible) or in macrophages (constitutive). These IL-10-Tg mice and non-Tg wild-type controls were immunized with a uveitogenic regimen of the retinal Ag interphotoreceptor retinoid-binding protein. Constitutive expression of IL-10 in macrophages abrogated disease and reduced Ag-specific immunological responses. These mice had detectable levels of IL-10 in sera and in ocular extracts. In contrast, expression of IL-10 in activated T cells only partially protected from EAU and marginally reduced Ag-specific responses. All IL-10-Tg lines showed suppression of Ag-specific effector cytokines. APC from Tg mice constitutively expressing IL-10 in macrophages exhibited decreased ability to prime naive T cells, however, Ag presentation to already primed T cells was not compromised. Importantly, IL-10-Tg mice that received interphotoreceptor retinoid-binding protein-specific uveitogenic T cells from wild-type donors were protected from EAU. We suggest that constitutively produced endogenous IL-10 ameliorates the development of EAU by suppressing de novo priming of Ag-specific T cells and inhibiting the recruitment and/or function of inflammatory leukocytes, rather than by inhibiting local Ag presentation within the eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号