首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yushmanov VE  Mandal PK  Liu Z  Tang P  Xu Y 《Biochemistry》2003,42(13):3989-3995
The structure and backbone dynamics of an extended second transmembrane segment (TM2e) of the human neuronal glycine receptor alpha(1) subunit in sodium dodecyl sulfate micelles were studied by (1)H and (15)N solution-state NMR. The 28-amino acid segment contained the consensus TM2 domain plus part of the linker between the second and third transmembrane domains. The presence of a well-structured helical region of at least 13 amino acids long and an unstructured region near the linker was evident from the proton chemical shifts and the pattern of midrange nuclear Overhauser effects (NOE). (15)N relaxation rate constants, R(1) and R(2), and (15)N-[(1)H] NOE indicated restricted internal motions in the helical region with NOE values between 0.6 and 0.8. The squared order parameter (S(2)), the effective correlation time for fast internal motions (tau(e)), and the global rotational correlation time (tau(m)) were calculated for all TM2e backbone N-H bonds using the model-free approach. The S(2) values ranged about 0.75-0.86, and the tau(e) values were below 100 ps for most of the residues in the helical region. The tau(m) value, calculated from the dynamics of the helical region, was 5.1 ns. The S(2) values decreased to 0.1, and the tau(e) values sharply increased up to 1.2 ns at the linker near the C-terminus, indicating that the motion of this region is unrestricted. The results suggest a relatively high degree of motional freedom of TM2e in micelles and different propensities of the N- and C-terminal moieties of the transmembrane domain to assume stable helical structures.  相似文献   

2.
The molecular basis of anesthetic interaction with membrane proteins has been explored via determination of anesthetic effects on the structure and dynamics of the extended second transmembrane domain (TM2e) of the human neuronal nicotinic acetylcholine receptor (nAChR) β2 subunit in dodecylphosphocholine (DPC) micelles by 1H and 15N solution-state NMR. Both 1-chloro-1,2,2-trifluorocyclobutane (F3) and isoflurane, two volatile general anesthetics, induced nonuniform changes in chemical shifts among residues in TM2e. Saturation transfer difference NMR experiments further confirmed the direct anesthetic interaction with TM2e. A significant and more specific anesthetic interaction was observed on three leucine residues at the helix C-terminus. Although the TM2e helical structure remained after addition of anesthetics, plausible shortening and lengthening of helix hydrogen bonds were evidenced by periodic changes in backbone amide chemical shifts. The TM2e backbone dynamics were determined on the basis of the 15N relaxation rate constants, R1 and R2, and the 15N-[1H] NOE using the model-free approach. The global tumbling time (11.7 ns) of TM2e in micelles slightly increased (∼12.3-12.5 ns) in the presence of anesthetics. The order parameter, S2, exceeded 0.9 for all 15N-labeled residues, showing a restricted internal motion. Anesthetics appear to have minor effect on the TM2e's internal motion. This study provided the basis for subsequent more comprehensive studies of anesthetic effects on the transmembrane domain complex of neuronal nAChR.  相似文献   

3.
The recent cryoelectron microscopy structure of the Torpedo nicotinic acetylcholine receptor (nAChR) at 4-Å resolution shows long helices for all transmembrane (TM) domains. This is in disagreement with several previous reports that the first TM domain of nAChR and other Cys-loop receptors are not entirely helical. In this study, we determined the structure and backbone dynamics of an extended segment encompassing the first TM domain (TM1e) of nAChR β2 subunit in dodecylphosphocholine micelles, using solution-state NMR and circular dichroism (CD) spectroscopy. Both CD and NMR results show less helicity in TM1e than in Torpedo nAChR structure (Protein Data Bank: 2BG9). The helical ending residues at the C-terminus are the same in the TM1e NMR structure and the Torpedo nAChR structure, but the helical starting residue (I-217) in TM1e is seven residues closer to the C-terminus. Interestingly, the helical starting residue is two residues before the highly conserved P-219, in accordance with the hypothesis that proline causes helical distortions at three residues preceding it. The NMR relaxation measurements show a dynamics pattern consistent with TM1e structure. The substantial nonhelical content adds greater flexibilities to TM1e, thereby implicating a different molecular basis for nAChR function compared to a longer and more rigid helical TM1.  相似文献   

4.
5.
The N-terminal src-homology 2 domain of the p85 alpha subunit of phosphatidylinositol 3' kinase (SH2-N) binds specifically to phosphotyrosine-containing sequences. Notably, it recognizes phosphorylated Tyr 751 within the kinase insert of the cytoplasmic domain of the activated beta PDGF receptor. A titration of a synthetic 12-residue phosphopeptide (ESVDY*VPMLDMK) into a solution of the SH2-N domain was monitored using heteronuclear 2D and 3D NMR spectroscopy. 2D-(15N-1H) heteronuclear single-quantum correlation (HSQC) experiments were performed at each point of the titration to follow changes in both 15N and 1H chemical shifts in NH groups. When mapped onto the solution structure of the SH2-N domain, these changes indicate a peptide-binding surface on the protein. Line shape analysis of 1D profiles of individual (15N-1H)-HSQC peaks at each point of the titration suggests a kinetic exchange model involving at least 2 steps. To characterize changes in the internal dynamics of the domain, the magnitude of the (15N-1H) heteronuclear NOE for the backbone amide of each residue was determined for the SH2-N domain with and without bound peptide. These data indicate that, on a nanosecond timescale, there is no significant change in the mobility of either loops or regions of secondary structure. A mode of peptide binding that involves little conformational change except in the residues directly involved in the 2 binding pockets of the p85 alpha SH2-N domain is suggested by this study.  相似文献   

6.
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.  相似文献   

7.
Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during both early embriogenesis and adulthood and is composed by two tightly interacting subunits: alpha-DG, membrane-associated and highly glycosylated, and the transmembrane beta-DG. Recently, by solid-phase binding assays and NMR experiments, we have shown that the C-terminal domain of alpha-DG interacts with a recombinant extracellular fragment of beta-DG (positions 654-750) independently from glycosylation and that the linear binding epitope is located between residues 550 and 565 of alpha-DG. In order to elucidate which moieties of beta-DG are specifically involved in the complex with alpha-DG, the ectodomain has been recombinantly expressed and purified in a labeled ((13)C,(15)N) form and studied by multidimensional NMR. Although it represents a natively unfolded protein domain, we obtained an almost complete backbone assignment. Chemical shift index, (1)H-(15)N heteronuclear single-quantum coherence and nuclear Overhauser effect (HSQC-NOESY) spectra and (3)J(HN,H)(alpha) coupling constant values confirm that this protein is highly disordered, but (1)H-(15)N steady-state NOE experiments indicate that the protein presents two regions of different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding of beta-DG(654-750) to the C-terminal region of the alpha subunit, alpha-DG(485-620), has been investigated, showing that the region of beta-DG(654-750) between residues 691 and 719 is involved in the interaction.  相似文献   

8.
We report the backbone dynamics of monomeric phospholamban in dodecylphosphocholine micelles using (1)H/(15)N heteronuclear NMR spectroscopy. Phospholamban is a 52-amino acid membrane protein that regulates Ca-ATPase in cardiac muscle. Phospholamban comprises three structural domains: a transmembrane domain from residues 22 to 52, a connecting loop from 17 to 21, and a cytoplasmic domain from 1 to 16 that is organized in an "L"-shaped structure where the transmembrane and the cytoplasmic domain form an angle of approximately 80 degrees (Zamoon et al., 2003; Mascioni et al., 2002). T(1), T(2), and (1)H/(15)N nuclear Overhauser effect values measured for the amide backbone resonances were interpreted using the model-free approach of Lipari and Szabo. The results point to the existence of four dynamic domains, revealing the overall plasticity of the cytoplasmic helix, the flexible loop, and part of the transmembrane domain (residues 22-30). In addition, using Carr-Purcell-Meiboom-Gill-based experiments, we have characterized phospholamban dynamics in the micros-ms timescale. We found that the majority of the residues in the cytoplasmic domain, the flexible loop, and the first ten residues of the transmembrane domain undergo dynamics in the micros-ms range, whereas minimal dynamics were detected for the transmembrane domain. Hydrogen/deuterium exchange factors measured at different temperatures support the existence of slow motion in both the loop and the cytoplasmic helix. We propose that these dynamic properties are critical factors in the biomolecular recognition of phospholamban by Ca-ATPase and other interacting proteins such as protein kinase A and protein phosphatase 1.  相似文献   

9.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

10.
Nicotinic acetylcholine receptors (nAChRs) are involved in fast synaptic transmission in the central and peripheral nervous system. Among the many different types of subunits in nAChRs, the β2 subunit often combines with the α4 subunit to form α4β2 pentameric channels, the most abundant subtype of nAChRs in the brain. Besides computational predictions, there is limited experimental data available on the structure of the β2 subunit. Using high-resolution NMR spectroscopy, we solved the structure of the entire transmembrane domain (TM1234) of the β2 subunit. We found that TM1234 formed a four-helix bundle in the absence of the extracellular and intracellular domains. The structure exhibited many similarities to those previously determined for the Torpedo nAChR and the bacterial ion channel GLIC. We also assessed the influence of the fourth transmembrane helix (TM4) on the rest of the domain. Although secondary structures and tertiary arrangements were similar, the addition of TM4 caused dramatic changes in TM3 dynamics and subtle changes in TM1 and TM2. Taken together, this study suggests that the structures of the transmembrane domains of these proteins are largely shaped by determinants inherent in their sequence, but their dynamics may be sensitive to modulation by tertiary and quaternary contacts.  相似文献   

11.
Abu-Baker S  Lu JX  Chu S  Brinn CC  Makaroff CA  Lorigan GA 《Biochemistry》2007,46(42):11695-11706
2H and 15N solid-state NMR spectroscopic techniques were used to investigate both the side chain and backbone dynamics of wild-type phospholamban (WT-PLB) and its phosphorylated form (P-PLB) incorporated into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) phospholipid bilayers. 2H NMR spectra of site-specific CD3-labeled WT-PLB (at Leu51, Ala24, and Ala15) in POPC bilayers were similar under frozen conditions (-25 degrees C). However, significant differences in the line shapes of the 2H NMR spectra were observed in the liquid crystalline phase at and above 0 degrees C. The 2H NMR spectra indicate that Leu51, located toward the lower end of the transmembrane (TM) helix, shows restricted side chain motion, implying that it is embedded inside the POPC lipid bilayer. Additionally, the line shape of the 2H NMR spectrum of CD3-Ala24 reveals more side chain dynamics, indicating that this residue (located in the upper end of the TM helix) has additional backbone and internal side chain motions. 2H NMR spectra of both WT-PLB and P-PLB with CD3-Ala15 exhibit strong isotropic spectral line shapes. The dynamic isotropic nature of the 2H peak can be attributed to side chain and backbone motions to residues located in an aqueous environment outside the membrane. Also, the spectra of 15N-labeled amide WT-PLB at Leu51 and Leu42 residues showed only a single powder pattern component indicating that these two 15N-labeled residues located in the TM helix are motionally restricted at 25 degrees C. Conversely, 15N-labeled amide WT-PLB at Ala11 located in the cytoplasmic domain showed both powder and isotropic components at 25 degrees C. Upon phosphorylation, the mobile component contribution increases at Ala11. The 2H and 15N NMR data indicate significant backbone motion for the cytoplasmic domain of WT-PLB when compared to the transmembrane section.  相似文献   

12.
Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause CF disease by altering the biosynthesis, maturation, folding and ion conductance of this protein. Our laboratory has focused on expression and structural analysis of the CFTR transmembrane (TM) domains using two-TM segments (i.e., helix-loop-helix constructs) which we term 'helical hairpins'; these represent the minimal model of tertiary contacts between two helices in a membrane. Previous studies on a library of TM3/4 hairpins of the first CFTR TM domain suggested that introduction of non-native polar residues into TM4 can compromise CFTR function through side chain-side chain H-bonding interactions with native Q207 in TM3 [Choi, M. Y., Cardarelli, L., Therien, A. G., and Deber, C. M. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations, Biochemistry 43 (2004) 8077-8083]. In the present work, we combine gel shift assays with a series of NMR experiments for comparative structural characterization of the wild type TM3/4 hairpin and its mutants V232D, I231D, Q207N/V232E. Over 95% of the backbone resonances of a 15N,13C-labelled V232D-TM3/4 construct in the membrane-mimetic environment of perfluorooctanoate (PFO) micelles were successfully assigned, and the presence and boundaries of helical segments within TM3 and TM4 were defined under these conditions. Comparative analysis of 15N and 1H chemical shift variations among HSQC spectra of WT-, V232D-, I231D- and Q207N/V232E-TM3/4 indicated that hairpin conformations vary with the position of a polar mutation (i.e., V232D and I231D vs. WT), but remain similar when hairpins with identically-positioned polar partners are compared (i.e., V232D vs. Q207N-V232E). The overall findings suggest that a polar mutation in a TM helix can potentially distort native interfacial packing determinants in membrane proteins such as CFTR, with consequences that may lead to disease.  相似文献   

13.
The backbone dynamics of the C-terminal SH2 domain from the regulatory subunit p85alpha (p85alpha C-SH2) of phosphoinositide 3-kinase has been investigated in the absence of, and in complex with, a high-affinity phosphotyrosine-containing peptide ligand derived from the platelet-derived growth-factor receptor. (15)N R(1) and R(2) relaxation rates and steady-state [(1)H]-(15)N NOE values were measured by means of (1)H-(15)N correlated two-dimensional methods and were analyzed within the framework of the model-free formalism. Several residues in the BC loop and in the neighbouring secondary structural elements display fast local dynamics in the absence of phosphotyrosine peptide ligand as evidenced by below-average [(1)H]-(15)N NOE values. Furthermore, residue Gln41 (BC3) displays conformational exchange phenomena as indicated by an above-average R(2) relaxation rate. Upon binding of the phosphotyrosine peptide, the NOE values increase to values observed for regular secondary structure and the exchange contribution to the R(2) relaxation rate for Gln41 (BC3) vanishes. These observations indicate a loss of backbone flexibility upon ligand binding. Substantial exchange contributions for His56 (betaD4) and Cys57 (betaD5), which are known to make important interactions with the ligand, are attenuated upon ligand binding. Several residues in the betaD'-FB region and the BG loop, which contribute to the ligand binding surface of the protein, exhibit exchange terms which are reduced or vanish when the ligand is bound. Together, these observations suggest that ligand binding is accompanied by a loss of conformational flexibility on the ligand binding face of the protein. However, comparison with other SH2 domains reveals an apparent lack of consensus in the changes in dynamics induced by ligand binding. Exchange rates for individual residues were quantified in peptide-complexed p85alpha C-SH2 from the dependence of the exchange contributions on the CPMG delay in an R(2) series and show that peptide-complexed p85alpha C-SH2 is affected by multiple conformational exchange processes with exchange rate constants from 10(2) s(-1) to 7.10(3) s(-1). Mapping of the exchange-rate constants on the protein surface show a clustering of residues with similar exchange-rate constants and suggests that clustered residues are affected by a common predominant exchange process.  相似文献   

14.
Cheng MH  Cascio M  Coalson RD 《Proteins》2007,68(2):581-593
Homology modeling is used to build initial models of the transmembrane domain of the human alpha1 glycine receptor (GlyR) based on the most recently published refined structure of nAChR (PDB ID: 2BG9). Six preliminary GlyR models are constructed using two different approaches. In one approach, five different homopentamers are built by symmetric assembly of alpha1 GlyR subunits using only one of the five unique chains of nAChR as a template. In a second approach, each nAChR subunit serves as a template for an alpha1 GlyR subunit. All six initial GlyR constructs are then embedded into a hydrated POPC lipid bilayer and subjected to molecular dynamics simulation for at least six nanoseconds. Each model is stable throughout the simulation, and the final models fall into three distinct categories. Homopentameric GlyR bundles using a single alpha nAChR subunit as a template appear to be in an open conformation. Under an applied external potential, permeation of Cl(-) ions is observed within several ns in a channel built on an alpha chain. Model channels built on non-alpha chains have a constriction either near the intracellular mouth or more centrally located in the pore domain, both of which may be narrow enough to close the channel and whose locations correspond to putative gates observed in nicotinicoid receptors. The differences between these three general models suggest that channel closure may be effected by either rotation or tangential tilting of TM2.  相似文献   

15.
16.
Proton pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha subunit with the NAD(H)-binding domain I and a beta subunit with the NADP(H)-binding domain III. The membrane domain (domain II) harbors the proton channel and is made up of the hydrophobic parts of the alpha and beta subunits. The interface in domain II between the alpha and the beta subunits has previously been investigated by cross-linking loops connecting the four transmembrane helices in the alpha subunit and loops connecting the nine transmembrane helices in the beta subunit. However, to investigate the organization of the nine transmembrane helices in the beta subunit, a split was introduced by creating a stop codon in the loop connecting transmembrane helices 9 and 10 by a single mutagenesis step, utilizing an existing downstream start codon. The resulting enzyme was composed of the wild-type alpha subunit and the two new peptides beta1 and beta2. As compared to other split membrane proteins, the new transhydrogenase was remarkably active and catalyzed activities for the reduction of 3-acetylpyridine-NAD(+) by NADPH, the cyclic reduction of 3-acetylpyridine-NAD(+) by NADH (mediated by bound NADP(H)), and proton pumping, amounting to about 50-107% of the corresponding wild-type activities. These high activities suggest that the alpha subunit was normally folded, followed by a concerted folding of beta1 + beta2. Cross-linking of a betaS105C-betaS237C double cysteine mutant in the functional split cysteine-free background, followed by SDS-PAGE analysis, showed that helices 9, 13, and 14 were in close proximity. This is the first time that cross-linking between helices in the same beta subunit has been demonstrated.  相似文献   

17.
Metcalfe EE  Traaseth NJ  Veglia G 《Biochemistry》2005,44(11):4386-4396
Phospholamban (PLB) is a 52 amino acid membrane-endogenous regulator of the sarco(endo)plasmic calcium adenosinetriphosphatase (SERCA) in cardiac muscle. PLB's phosphorylation and dephosphorylation at S16 modulate its regulatory effect on SERCA by an undetermined mechanism. In this paper, we use multidimensional (1)H/(15)N solution NMR methods to establish the structural and dynamics basis for PLB's control of SERCA upon S16 phosphorylation. For our studies, we use a monomeric, fully active mutant of PLB, where C36, C41, and C46 have been mutated to A36, F41, and A46, respectively. Our data show that phosphorylation disrupts the "L-shaped" structure of monomeric PLB, causing significant unwinding of both the cytoplasmic helix (domain Ia) and the short loop (residues 17-21) connecting this domain to the transmembrane helix (domains Ib and II). Concomitant with this conformational transition, we also find pronounced changes in both the pico- to nanosecond and the micro- to millisecond time scale dynamics. The (1)H/(15)N heteronuclear NOE values for residues 1-25 are significantly lower than those of unphosphorylated PLB, with slightly lower NOE values in the transmembrane domain, reflecting less restricted motion throughout the whole protein. These data are supported by the faster spin-lattice relaxation rates (R(1)) present in both the cytoplasmic and loop regions and by the enhanced spin-spin transverse relaxation rates (R(2)) observed in the transmembrane domain. These results demonstrate that while S16 phosphorylation induces a localized structural transition, changes in PLB's backbone dynamics are propagated throughout the protein backbone. We propose that the regulatory mechanism of PLB phosphorylation involves an order-to-disorder transition, resulting in a decrease in the PLB inhibition of SERCA.  相似文献   

18.
Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause CF disease by altering the biosynthesis, maturation, folding and ion conductance of this protein. Our laboratory has focused on expression and structural analysis of the CFTR transmembrane (TM) domains using two-TM segments (i.e., helix-loop-helix constructs) which we term ‘helical hairpins’; these represent the minimal model of tertiary contacts between two helices in a membrane. Previous studies on a library of TM3/4 hairpins of the first CFTR TM domain suggested that introduction of non-native polar residues into TM4 can compromise CFTR function through side chain-side chain H-bonding interactions with native Q207 in TM3 [Choi, M. Y., Cardarelli, L., Therien, A. G., and Deber, C. M. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations, Biochemistry 43 (2004) 8077-8083]. In the present work, we combine gel shift assays with a series of NMR experiments for comparative structural characterization of the wild type TM3/4 hairpin and its mutants V232D, I231D, Q207N/V232E. Over 95% of the backbone resonances of a 15N,13C-labelled V232D-TM3/4 construct in the membrane-mimetic environment of perfluorooctanoate (PFO) micelles were successfully assigned, and the presence and boundaries of helical segments within TM3 and TM4 were defined under these conditions. Comparative analysis of 15N and 1H chemical shift variations among HSQC spectra of WT-, V232D-, I231D- and Q207N/V232E-TM3/4 indicated that hairpin conformations vary with the position of a polar mutation (i.e., V232D and I231D vs. WT), but remain similar when hairpins with identically-positioned polar partners are compared (i.e., V232D vs. Q207N-V232E). The overall findings suggest that a polar mutation in a TM helix can potentially distort native interfacial packing determinants in membrane proteins such as CFTR, with consequences that may lead to disease.  相似文献   

19.
We recorded several types of heteronuclear three-dimensional (3D) NMR spectra on 15N-enriched and 13C/15N-enriched histidine-containing phosphocarrier protein, HPr, to extend the backbone assignments [van Nuland, N. A. J., van Dijk, A. A., Dijkstra, K., van Hoesel, F. H. J., Scheek, R. M. & Robillard, G. T. (1992) Eur. J. Biochem, 203, 483-491] to the side-chain 1H,15N and 13C resonances. From both 3D heteronuclear 1H-NOE 1H-13C and 1H-NOE 1H-15N multiple-quantum coherence (3D-NOESY-HMQC) and two-dimensional (2D) homonuclear NOE spectra, more than 1200 NOE were identified and used in a step-wise structure refinement process using distance geometry and restrained molecular dynamics involving a number of new features. A cluster of nine structures, each satisfying the set of NOE restraints, resulted from this procedure. The average root-mean-square positional difference for the C alpha atoms is less than 0.12 nm. The secondary structure topology of the molecule is that of an open-face beta sandwich formed by four antiparallel beta strands packed against three alpha helices, resembling the recently published structure of Bacillus subtilis HPr, determined by X-ray crystallography [Herzberg, O., Reddy, P., Sutrina, S., Saier, M. H., Reizer, J. & Kapafia, G. (1992) Proc. Natl, Acad. Sci. USA 89, 2499-2503).  相似文献   

20.
Tiburu EK  Karp ES  Dave PC  Damodaran K  Lorigan GA 《Biochemistry》2004,43(44):13899-13909
(2)H and (15)N solid-state NMR spectroscopic techniques were used to investigate the membrane composition, orientation, and side-chain dynamics of the transmembrane segment of phospholamban (TM-PLB), a sarcoplasmic Ca(2+)-regulator protein. (2)H NMR spectra of (2)H-labeled leucine (deuterated at one terminal methyl group) incorporated at different sites (CD(3)-Leu28, CD(3)-Leu39, and CD(3)-Leu51) along the TM-PLB peptide exhibited line shapes characteristic of either methyl group reorientation about the C(gamma)-C(delta) bond axis or by additional librational motion about the C(alpha)-C(beta) and C(beta)-C(gamma) bond axes. The (2)H NMR line shapes of all CD(3)-labeled leucines are very similar below 0 degrees C, indicating that all of the residues are located inside the lipid bilayer. At higher temperatures, all three labeled leucine residues undergo rapid reorientation about the C(alpha)-C(beta), C(beta)-C(gamma), and C(gamma)-C(delta) bond axes as indicated by (2)H line-shape simulations and reduced quadrupolar splittings. At all of the temperatures studied, the (2)H NMR spectra indicated that the Leu51 side chain has less motion than Leu39 or Leu28, which is attributed to its incorporation in the pentameric PLB leucine zipper motif. The (15)N powder spectra of Leu39 and Leu42 residues indicated no backbone motion, while Leu28 exhibited slight backbone motion. The chemical-shift anisotropy tensor values for (15)N-labeled Leu TM-PLB were sigma(11) = 50.5 ppm, sigma(22) = 80.5 ppm, and sigma(33) = 229 ppm within +/-3 ppm experimental error. The (15)N chemical-shift value from the mechanically aligned spectrum of (15)N-labeled Leu39 PLB in DOPC/DOPE phospholipid bilayers was 220 ppm and is characteristic of a TM peptide that is nearly parallel with the bilayer normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号