共查询到20条相似文献,搜索用时 0 毫秒
1.
The recent identification of the familial adenomatous polyposis (FAP) gene (designated as APC) enables conclusive genetic testing of at-risk family members for the specific mutation in families in which the germline gene mutation has been characterized. Presymptomatic molecular diagnosis of FAP was performed by direct direction of mutations in lymphocyte DNA in four families. Each of the families has a different mutation of the APC gene. Twenty-seven offspring of affected individuals (a priori risk of 50%) were tested. Ten of the 27 had already developed clinical features of FAP. Of the remaining seventeen, two had had a negative colon exam at an early age, and nine had never had colon exams (mean age, 12.1±3.1 SD years). Six children from this group (54%) were found to carry their affected parent's mutation. No change in the conventional FAP colon screening regimen is recommended for these children. In contrast, when direct tests indicate that an individual does not have the FAP mutation, we recommended that screening be decreased. Reduction of uncertainty for at-risk FAP family members is an important benefit of genetic testing. 相似文献
2.
Defects in the APC gene are inarguably linked to the progression of colon cancers that arise both sporadically and through the transmission of germline mutations. Genetic evidence from humans and mouse models suggest that APC is a classic tumor suppressor in that both alleles likely require inactivation for tumor growth to ensue. Nearly all of the mutations, germline and somatic, result in premature termination of the single polypeptide chain, normally consisting of 2843 amino acids. Several definable motifs have now been mapped to the linear amino acid sequence of the APC polypeptide. These include an oligomerization domain, armadillo repeats, binding sites for β-catenin, the human discs large protein, microtubules, and other proteins of unknown function. Inactivation of APC in cancer is likely due to loss of function(s) normally associated with the deleted protein structure. 相似文献
3.
BackgroundFamilial adenomatous polyposis (known also as classical or severe FAP) is a rare autosomal dominant colorectal cancer predisposition syndrome, characterized by the presence of hundreds to thousands of adenomatous polyps in the colon and rectum from an early age. In the absence of prophylactic surgery, colorectal cancer (CRC) is the inevitable consequence of FAP. The vast majority of FAP is caused by germline mutations in the adenomatous polyposis coli (APC) tumor suppressor gene (5q21). To date, most of the germline mutations in classical FAP result in truncation of the APC protein and 60% are mainly located within exon 15. Material and methodsIn this first nationwide study, we investigated the clinical and genetic features of 52 unrelated Algerian FAP families. We screened by PCR-direct sequencing the entire exon 15 of APC gene in 50 families and two families have been analyzed by NGS using a cancer panel of 30 hereditary cancer genes. ResultsAmong 52 FAP index cases, 36 had 100 or more than 100 polyps, 37 had strong family history of FAP, 5 developed desmoids tumors, 15 had extra colonic manifestations and 21 had colorectal cancer. We detected 13 distinct germline mutations in 17 FAP families. Interestingly, 4 novel APC germline pathogenic variants never described before have been identified in our study. ConclusionsThe accumulating knowledge about the prevalence and nature of APC variants in Algerian population will contribute in the near future to the implementation of genetic testing and counseling for FAP patients. 相似文献
4.
Adenomatous polyps are an intermediate in the pathway to colon carcinoma. An inherited disorder, familial adenomatous polyposis coli (APC), is characterized by hundreds to thousands of adenomatous polyps. A previously reported family had colon cancer associated with a low average but highly heterogenous number of colonic polyps, this phenotype mapped to the APC locus on 5q. Four new families have been ascertained in which the phenotypic pattern was different from classical polyposis but similar to that of the "prototype" kindred reported earlier. By multilocus linkage analysis, the gene responsible for the disease phenotype was mapped, with a high level of confidence, to the APC locus in two of the four families with the attenuated or variant form of polyposis (AAPC); the results for the two remaining kindreds were inconclusive. A combined maximum LOD score of approximately 7.6 at a recombination fraction of 0 was obtained when the results were summed over the four pedigrees with markers closest to the APC locus. The establishment of genetic linkage in such families may point to the APC locus as having a more significant role in inherited predispositions to colorectal cancer than was previously thought. 相似文献
5.
Presymptomatic genetic testing for the presence of a mutant allele causing familial adenomatous polyposis coli (APC) has been difficult to perform effectively in the past because DNA markers surrounding the APC gene on chromosome 5q have not been very informative. We report results of genetic linkage studies on both research families and clinical families by using D5S346, a highly polymorphic dinucleotide (CA)-repeat locus 30-70 kb from the APC gene. Linkage analysis with this marker in a large APC pedigree showed an increase of at least 9.0 LOD units, in likelihood of linkage of the disease-causing allele to the APC locus, when compared with the highest LOD score attained with any other closely linked marker. When the first 14 APC families that requested genotypic analysis by the DNA Diagnostic Laboratory at the University of Utah were tested with D5S346, 20 of the 31 at-risk individuals were identified as either carriers or noncarriers of an APC-predisposing allele. We see this marker as an important tool for research studies and for the presymptomatic diagnosis of APC. 相似文献
6.
The first 14 exons of the APC gene have been screened by the denaturation gradient gel electrophoresis method in 160 unrelated patients with familial adenomatous polyposis coli (APC) syndrome. Four polymorphic variants corresponding to silent mutations not associated with the disease phenotype were observed. Mutations predicted to alter the coding property of the APC gene were observed in 26 patients. All these mutations are expected to lead either to aberrant splicing, to synthesis of a truncated APC protein because of the emergence of a stop codon, or to a change in the translation reading frame. Single-base-pair substitutions were observed on 21 occasions. The most frequent mutation (eight cases) was a C-to-T change which exclusively occurred on the nontranscribed strand within a CG dinucleotide. 相似文献
8.
Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth‐related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA‐seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292‐4293‐Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA‐seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene‐based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high‐resolution reference for treating other syndromes associated with supernumerary teeth. 相似文献
9.
We have evaluated the usefulness of denaturing high performance liquid chromatography (dHPLC) for scanning the adenomatous polyposis coli (APC) gene for point mutations, small deletions, and insertions. Our assay consists of 28 sets of primers to amplify the 15 exons of the APC gene. All PCR reactions were amplified simultaneously using the same reaction conditions in a 96-well format and then analyzed by dHPLC, using empirically determined optimum temperatures for partial fragment denaturation. Previously studied DNA specimens from 47 familial adenomatous polyposis (FAP) patients were analyzed by dHPLC and all mutations were correctly identified and confirmed by sequence analysis. This approach identified a single-base substitution in exon 6 and a 2-bp insertion in exon 15 that initially had not been detected by single-strand conformational polymorphism (SSCP) analysis. A novel mutation in exon 15 of the APC gene, 2065delG (codon 689) that had previously been undetected by the protein truncation test (PTT) was also identified by dHPLC. We present our validation studies of dHPLC technology for APC gene analysis in terms of sensitivity and specificity and compare it to current standard scanning technologies including PTT, SSCP, and conformational sensitive gel electrophoresis (CSGE). 相似文献
10.
Mutations in the adenomatous polyposis coli (APC) gene are the basis of familial adenomatous polyposis and the majority of sporadic colorectal cancer. APC is expressed in a wide variety of tissues, interacts with the cytoskeleton, is involved in regulating levels of beta-catenin and, most recently, has been shown to bind DNA, suggesting that it may possess a nuclear role. The mutation spectrum implicated in tumorigenesis and its correlation with disease phenotype is well characterized and has contributed to our understanding of important functional domains in APC. Despite these advances, APC continues to provide a fertile subject of research for both colorectal tumorigenesis and cancer in general. 相似文献
12.
The APC gene is a putative human tumor-suppressor gene responsible for adenomatous polyposis coli (APC), an inherited, autosomal dominant predisposition to colon cancer. It is also implicated in the development of sporadic colorectal tumors. The characterization of APC gene mutations in APC patients is clinically important because DNA-based tests can be applied for presymptomatic diagnosis once a specific mutation has been identified in a family. Moreover, the identification of the spectrum of APC gene mutations in patients is of great interest in the study of the biological properties of the APC gene product. We analyzed the entire coding region of the APC gene by the PCR–single-strand conformation polymorphism method in 42 unrelated Italian APC patients. Mutations were found in 12 cases. These consist of small (5–14 bp) base-pair deletions leading to frameshifts; all are localized within exon 15. Two of these deletions, a 5-bp deletion at position 3183–3187 and a 5-bp deletion at position 3926–3930, are present in 3/42 and 7/42 cases of our series, respectively, indicating the presence of mutational hot spots at these two sites. 相似文献
13.
In the present study, we investigated the mechanisms by which zinc causes growth arrest in colon cancer cells. The results suggest that zinc treatment stabilizes the levels of the wild-type adenomatous polyposis coli (APC) protein at the post-translational level since the APC mRNA levels and the promoter activity of the APC gene were decreased in HCT-116 cells (which express the wild-type APC gene) after treatment with ZnCl2. Increased levels of wild-type but not truncated APC proteins were required for the ZnCl2-mediated G2/M phase arrest in different colon cancer cell lines. We further tested whether serum-stimulation, which induces cell cycle arrest in the S phase, can relieve ZnCl2-induced G2/M phase arrest of HCT-116 cells. Results showed that in the HCT-116 cells pretreated with ZnCl2, the serum-stimulation neither changed the distribution of G2/M phase arrested cells nor the increased levels of APC protein. The G2/M phase arrest correlated with retarded growth of HCT-116 cells. To further establish that wild-type APC protein plays a role in ZnCl2-induced G2/M arrest, we treated SW480 colon cancer cells that express truncated APC protein. We found that ZnCl2 treatment did not induce G2/M phase arrest in SW480 cells; however, the cell growth was retarded due to the loss of E-cadherin and alpha-tubulin levels. These results suggest that ZnCl2 inhibits the proliferation of colon cancer cells (which carry the wild-type APC gene) through stabilization of the APC protein and cell cycle arrest in the G2/M phase. On the other hand, ZnCl2 inhibits the proliferation of colon cancer cells (which carry the mutant APC gene) by disrupting cellular attachment and microtubule stability. 相似文献
15.
Recently, we found an interaction between adenomatous polyposis coli (APC) and DNA polymerase beta (pol-beta) and showed that APC blocks strand-displacement synthesis of long-patch base excision repair (LP-BER) (Narayan, S., Jaiswal, A. S., and Balusu, R. (2005) J. Biol. Chem. 280, 6942-6949); however, the mechanism is not clear. Using an in vivo LP-BER assay system, we now show that the LP-BER is higher in APC-/- cells than in APC+/+ cells. In addition to pol-beta, the pull-down experiments showed that the full-length APC also interacted with flap endonuclease 1 (Fen-1). To further characterize the interaction of APC with pol-beta and Fen-1, we performed a domain-mapping of APC and found that both pol-beta and Fen-1 interact with a 138-amino acids peptide from the APC at the DRI-domain. Our functional assays showed that APC blocks pol-beta-mediated 1-nucleotide (1-nt) as well as strand-displacement synthesis of reduced abasic, nicked-, or 1-nt gapped-DNA substrates. Further studies demonstrated that APC blocks 5'-flap endonuclease as well as the 5'-3' exonuclease activity of Fen-1 resulting in the blockage of LP-BER. From these results, we concluded that APC can have three different effects on the LP-BER pathway. First, APC can block pol-beta-mediated 1-nt incorporation and strand-displacement synthesis. Second, APC can block LP-BER by blocking the coordinated formation and removal of the strand-displaced flap. Third, APC can block LP-BER by blocking hit-and-run synthesis. These studies will have important implications for APC in DNA damage-induced carcinogenesis and chemoprevention. 相似文献
16.
Germline mutations of the adenomatous polyposis coli (APC) tumor-suppressor gene result in the hereditary colorectal cancer syndrome familial adenomatous polyposis (FAP). Almost all APC mutations that have been identified are single-nucleotide alterations, small insertions, or small deletions that would truncate the protein product of the gene. No well-characterized intragenic rearrangement of APC has been described, and the prevalence of this type of mutation in FAP patients is not clear. We screened 49 potential FAP families and identified 26 different germline APC mutations in 30 families. Four of these mutations were genomic rearrangements resulting from homologous and nonhomologous recombinations mediated by Alu elements. Two of these four rearrangements were complex, involving deletion and insertion of nucleotides. Of these four rearrangements, one resulted in the deletion of exons 11 and 12 and two others resulted in either complete or partial deletion of exon 14. The fourth rearrangement grossly altered the sequence within intron 14. Although this rearrangement did not affect any coding sequence of APC at the genomic DNA level, it caused inappropriate splicing of exon 14. These rearrangements were initially revealed by analyzing cDNAs and could not have been identified by using mutation detection methods that screened each exon individually. The identification of a rearrangement that did not alter any coding exons yet affected the splicing further underscores the importance of using cDNA for mutation analysis. The identification of four genomic rearrangements among 30 mutations suggests that genomic rearrangements are frequent germline APC mutations. 相似文献
17.
Colorectal cancer has become the third leading cause of death from cancer in Taiwan. Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease characterized by the presence of multiple adenomatous polyps in the colon and rectum. The gene responsible for FAP (APC) was cloned in 1991. Extensive analyses of the mutation spectra in FAP kindreds have been performed in different countries, but the results have been highly variable (30–80%). In this study, we used denaturing high-performance liquid chromatography (DHPLC) followed by automatic sequencing in an effort to establish the mutation spectrum of APC from DNA of peripheral blood cells. Among the 6 FAP probands analyzed, mutations were detected in 3 (50%), 2 of which were novel. The first novel mutation was at codon 2166, with a C to T transition, resulting in a stop codon. The second novel mutation was at codon 1971, with a C to G transversion, resulting in an amino acid change from serine to cysteine. The third mutation involved an A insertion in the sequence of -AAAAAA- at codons 1554–1556, which created a downstream stop codon (codon 1558). This study is the first to report mutation analysis in Taiwanese FAP probands. 相似文献
18.
Familial adenomatous polyposis (FAP) is a well-known hereditary condition characterised by alimentary system tumours. Tens
to thousands of polyps occur in the colon and rectum of the patients. There is a high heterogeneity with regard to the number
and time of the occurrence of polyps. The occurrence of FAP is associated with mutations in the APC tumour suppressor gene, which was described in 1991. Since then, many studies have been done to analyse the distribution
of mutations in individual populations and to determine the function of the gene and a diagnostic approach to FAP. Here the APC gene was studied with respect to the occurrence of small mutations and large rearrangements in 300 unrelated Polish FAP families.
Ninety-seven mutations were identified in 164 families. Out of these mutations, 80 were small mutations, including 58 small
mutations that were first identified in the Polish population (42 novel and 16 described previously). An increased frequency
of mutation c.3927_3931delAAAGA was observed in 10% of the Polish group. Seventeen large rearrangements were found in 29 families.
Out of those rearrangements, 8 repeat rearrangements occurred in 20 families. A problem in fast molecular diagnostics of FAP
is a high heterogeneity of mutations in the APC gene. It seems that a multiplex ligation-dependent probe amplification test and searching for small mutations by the use
of screening methods at the 5’ end of exon 15 and exons 14, 9, 11, 13, 5, and 3, help to improve the molecular diagnostics
of FAP in Polish patients. 相似文献
|