首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J. Dissing 《Biochemical genetics》1987,25(11-12):901-918
An immunological study was performed on human red cell acid phosphatase (ACP1) isozymes encoded by different alleles, each of which is expressed as an electrophoretically fast (f) isozyme and a slow (s) isozyme. These isozymes reacted as two immunochemically different groups. Allele-specific reactions were not detected between either the f isozymes or the s isozymes. Quantitation of ACP1 isozymes in red cells by crossed immunoelectrophoresis revealed a phenotype-dependent variation in the concentration of isozyme protein. A simple gene dosage effect was indicated and the ordering of the ACP1 alleles (ACP1*A < ACP1*B < ACP1*C < ACP1*E) was identical to that found for enzyme activity levels. Also, an allele effect on the proportion between s and f isozymes (s/f) was observed; the ordering here was ACP1* B < ACP1*A < ACP1*, which is the same as that reported for the susceptibility to modulation with purines. These variations in isozyme protein levels appear to account for the phenotypic differences in the intensity of the isozyme bands, when activity-stained after electrophoresis, and in the red cell enzyme activity levels. Investigation of two carriers of a Null allele showed no evidence of an aberrant protein product, and half-normal concentrations of enzyme protein were observed in the red cells of these individuals.  相似文献   

3.
We have isolated two cDNA clones that correspond to the mRNAs for two isozymes of the human L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77). The DNA sequence of one of these encodes the amino acid sequence of the C-terminal half of the human erythrocyte isozyme I. The other cDNA clone includes the complete coding region of the more acidic isozyme II. With the exception of potential polymorphic sites at amino acid residues 119 and 205, the deduced amino acid sequences differ only at the C-terminus, where the -RWK sequence of isozyme I is replaced by a -RDEL sequence in isozyme II. The latter sequence is identical to a mammalian endoplasmic reticulum retention signal. With the previous evidence for only a single gene for the L-isoaspartyl/D-aspartyl methyltransferase in humans, and with evidence for consensus sites for alternative splicing in corresponding mouse genomic clones, we suggest that alternative splicing reactions can generate the major isozymes previously identified in human erythrocytes. The presence of alternative splicing leads us to predict the existence of a third isozyme with a -R C-terminus. The calculated isoelectric point of this third form is similar to that of a previously detected but uncharacterized minor methyltransferase activity.  相似文献   

4.
ACP1GUA-1, a variant of human erythrocyte acid phosphatase, exists as a polymorphism (allele frequency of .132) in the Guaymi Indians of Central America. This variant has an electrophoretic mobility similar to the common B- and C-type variants, but individuals of the ACP1GUA-1 phenotype have a level of enzyme activity only 27% of the activity expected for the ACP1C variant. The GUA-1 variant is more thermostable than is the B variant, and the order of responsiveness to the modulation of activity by purine analogs and folate is always (B)-(A)-(GUA-1). Thus, the GUA-1 variant is a low-activity variant with C-like regulatory properties. Erythrocytes from individuals of the ACP1GUA-1 phenotype have increased basal levels of glutathione reductase, and a larger fraction of the glutathione reductase protein is present as the holoenzyme, indicating increased levels of flavin adenine dinucleotide in the erythrocytes of these individuals. This is consistent with the suggestion that ACP1 has a physiological function as a flavin mononucleotide phosphatase.  相似文献   

5.
In human, there are four AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) isozymes: E1, E2, M and L. Chromatographic, electrophoretic and immunological studies showed the existence of isozymes E1 and E2 in erythrocytes, isozyme M in muscle and isozyme L in liver and brain. The tissues such as heart, kidney and spleen contained isozymes E1, E2 and L. Isozymes E1, M and L were isolated as apparently homogeneous preparations. The three isozymes were all tetramers composed of identical subunits, but differing slightly in molecular weight; isozyme E1 showed a subunit molecular weight of 80 000, isozyme M 72 000 and isozyme L 68 000. They were immunologically different from one another. The antisera precipitated only the corresponding enzyme and did not precipitate any other isozyme. The three isozymes were also different in kinetic and regulatory properties. Isozyme E2 was very similar to isozyme E1 in immunological and kinetic properties, although isozyme E2 could be separated from isozyme E1 by phosphocellulose chromatography, and zonal electrophoresis.  相似文献   

6.
We have purified the two major isozymes of the L-isoaspartyl/D-aspartyl protein methyltransferase from both human and bovine erythrocytes. These four enzymes all have polypeptide molecular weights of approximately 26,500 and appear to be monomers in solution. Each of these enzymes cross-reacts with antibodies directed against protein carboxyl methyltransferase I from bovine brain. Their structures also appear to be similar when analyzed by dodecyl sulfate gel electrophoresis for the large fragments produced by digestion with Staphylococcus aureus protease V8 or when analyzed by high-performance liquid chromatography (HPLC) for tryptic peptides. The structural relatedness of these enzymes was confirmed by sequence analysis of a total of 433 residues in 32 tryptic fragments of the human erythrocyte isozymes I and II and of the bovine erythrocyte isozyme II. We found sequence identify or probable identity in 111 out of 112 residues when we compared the human isozymes I and II and identities in 127 out of 134 residues when the human and bovine isozymes II were compared. These results suggest that the erythrocyte isozymes from both organisms may have nearly identical structures and confirm the similarities in the function of these methyltransferases that have been previously demonstrated.  相似文献   

7.
Electrophoretic patterns for isocitrate dehydrogenase (IDH; EC 1.1.1.42), acid phosphatase (ACP; EC 3.1.3.2), peroxidase (PER; EC 1.11.1.7), and esterase (EST; EC 3.1.1.1) isozymes were determined inCereus peruvianus tissues and used as markers of genetic uniformity of calli and of the plants regenerated from callus cultures. One IDH, six ACP, six PER, and six EST isozymes were induced in cultured callus tissues in medium containing three 2,4-dichlorophenoxyacetic acid and kinetin combinations. Four ACP, two PER, and three EST isozymes were still present in all regenerated plantsin vitro and therefore can be used as markers of theC. peruvianus plants regenerated from callus tissues. The differential patterns of ACP and IDH isozymes and the similar zymograms for PER and EST isozymes presented by callus tissues were used in a comparison of callus tissues cultured for 2 years. The comparative analysis of zymograms within each enzyme system indicated a mean heterogeneity coefficient of 0.33 forC. peruvianus calli cultured for 2 years. Because of the isozyme variations, which developed in culture medium and were transferred to the regenerated plants, the IDH, ACP, PER, and EST enzyme systems can be considered to be good markers for investigating possible genetic variations in plant populations ofC. peruvianus obtainedin vitro from callus culture.This research was supported by the CNPq  相似文献   

8.
Molecular properties of the two isozymes expressed by the B allele at the red cell acid phosphatase locus (ACP1) have been studied to distinguish between possible mechanisms for their production. The difference in electric charge exhibited by the native isozymes was retained under denaturing conditions; the unfolded peptide chains renatured without conversion of one form to the other. Chromatographic analysis [thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC)] of tryptic digests showed 12 peptides common to both isozymes but also revealed 5 peptides unique to one isozyme and 3 (possibly 4) peptides unique to the other. These findings argue against both conformational isomerization and simple posttranslational modification as the mechanism of generation of the two isozymes. We suggest that the two isozymes are synthesized as discrete molecular entities.  相似文献   

9.
We have examined the hypothesis that the human erythrocyte isozyme of pyruvate kinase (EC 2.7.1.40) is a hybrid of the two isozymes present in liver. Rabbit antiserum against purified human erythrocyte pyruvate kinase inactivates the erythrocyte isozyme and the major liver isozyme from human tissue but does not inactivate the minor liver isozyme. The electrophoretic mobilities of the erythrocyte and major liver isozymes are altered by anti-erythrocyte enzyme antibody while the mobility of the minor liver isozyme is unaffected. Gel diffusion analysis indicates cross-reactivity between the erythrocyte and major liver isozyme but no cross-reactivity with the minor liver isozyme. The hybrid hypothesis would predict cross-reactivity including changes in activity and mobility of all isozymes and we conclude, therefore that the hypothesis is incorrect.  相似文献   

10.
A new variant of erythrocyte acid phosphatase, designated ACP1TIC-1, is characterized by a more cathodal electrophoretic mobility than any of the common polymorphic phenotypes, both in the presence and absence of tricarboxylic acids. Individuals of the ACP1TIC-1 phenotype have a level of enzyme activity (4.8 +/- 0.1 mumol/g hemoglobin per min) similar to individuals of the ACP1A phenotype, although no differences in Km values were observed or is the extent of phosphate inhibition different between the ACP1TIC-1 and the ACP1B variants. The thermostability of the enzyme is less than that observed for any of the common variants. The TIC-1 variant is activated by adenine and inhibited by folic acid to the same extent as the type-A enzyme, while the stimulation of the activity of the TIC-1 enzyme by hypoxanthine and the inhibition of it by uric acid is similar to that for the B enzyme. Thus, the TIC-1 variant has a unique combination of kinetic properties, seeming to be a hybrid of A-type and B-type characteristics.  相似文献   

11.
The immunological cross-reactivity of heterogeneous acid phosphatase isozymes from different human tissues has been studied using monospecific antisera prepared against four homogeneous acid phosphatases. The enzyme characterized as tartrate-inhibitable, prostatic acid phosphatase is also found to be present in leukocytes, kidney, spleen, and placenta. The tartrate-inhibitable (liver) lysosomal enzyme is also found in kidney, fibroblasts, brain, placenta, and spleen, but it is not detectable in erythrocytes and prostate. In several tissues, 10–20% of the tartrate-inhibitable enzyme is not precipitated by any of the antisera used; an exceptionally high amount (54%) of such an enzyme is present in human brain. Antiserum against a low molecular weight tartrate-resistant liver enzyme (14 kDa) does not cross-react with the erythrocyte enzyme. (10–20 kDa). All other tissues except placenta, prostate, and fibroblast cells show a cross-reactivity with the 14-kDa acid phosphatase antiserum. Thus, the low molecular weight human liver acid phosphatase is distinct from the erythrocyte enzyme, and there are also at least three different tartrate-inhibitable acid phosphatases in human tissues. Chromosomal assignments have been made for only two of the (at least) five acid phosphatases that are present in adult human tissues.This study was supported by DHHS Research Grant GM 27003 from the U.S. National Institute of General Medical Sciences and by Grant SFB-104 from the Deutsche Forschungsgemeinschaft.  相似文献   

12.
The presence of a common antigenic determinant on the Dictyostelium discoideum acid phosphatase isozyme 1 (ap 1), and the absence of this determinant on the isozyme ap2 enables separation of the two isozymes. This separation is accomplished by removal of ap1 from samples with a common antigen monoclonal antibody followed by immunoprecipitation of ap2 with an acid phosphatase monoclonal antibody. Application of this separation scheme on cells pulse-labeled early (2 h) and late (18 h) in the developmental cycle reveal that ap1 protein synthesis occurs only early in development and that the protein remains stable throughout development, whereas ap2 protein synthesis occurs only late in development. Furthermore, pulse-chase experiments during both early and late development reveal that both isozymes of acid phosphatase are initially synthesized as precursor molecules (Mr = 60,000) which are then processed to mature forms (Mr = 58,000). The processing event(s) for acid phosphatase begin in less than 5 min compared to 25-30 min for Dictyostelium alpha-mannosidase and 10-15 min for Dictyostelium beta-glucosidase. Endoglycosidase H and Endoglycosidase F treatment of both isozymes reveals identical cleavage patterns for ap1 and ap2, indicating that the amount of carbohydrate on both molecules is equivalent. Preliminary studies to identify modification differences reveal that fucose is not present on either isozyme; however, sulfate is present on the ap1 isozyme and absent on the ap2 isozyme. These results suggest that differences in the modification of newly synthesized acid phosphatase at different times during the Dictyostelium life cycle result in the appearance of two distinct acid phosphatase isozymes.  相似文献   

13.
Summary Four electrophoretic variants of human erythrocyte triosephosphate isomerase (TPI) have been studied to investigate the origin of the multiple forms of human TPI, in particular the constitutive TPI-B isozyme and the cell division-associated TPI-A isozyme. The variant phenotype expressed by the constitutive TPI-B isozyme in both erythrocytes and peripheral lymphocytes was also expressed by the cell division-associated isozymes in mitogen-stimulated lymphocytes and hair root cells. These results strongly support the hypothesis of Decker and Mohrenweiser (1981) that TPI-B and TPI-A originated from the same structural gene. We also found that the isozyme e is different from TPI-A with respect to both its electrophoretic mobility and heat stability. This finding is in contrast to the recent conclusion of Yuan et al. (1981) that both the isozyme e and TPI-A are deamidation products of TPI-B.  相似文献   

14.
1. A novel acid phosphatase isozyme E (formerly null mutant 0) was partially purified by ammonium sulfate fractionation, DEAE-Sephacel and Sephacryl S-200 column chromatography, and its properties were compared with those of other isozymes of the silkworm hemolymph. 2. The isozyme E was extremely heat labile and showed lower pH-stability than those of others. 3. Three isozymes hydrolyzed p-nitrophenyl phosphate, alpha-naphthyl phosphate, alpha-naphthyl phosphate and glucose-1-phosphate strongly. The isozyme E showed about 50% hydrolyzing activity for alpha-naphthyl phosphate as compared to those of A and B. 4. Activities of three isozymes were inhibited by tartaric acid, sodium fluoride, ammonium molybdate and potassium diphosphate. Inhibitory effects of Cu(2+) and HG(2+) were most remarkable against E isozyme.  相似文献   

15.
Glucose-6-phosphate isomerase shows a biphasic decay pattern during red blood cell aging, which is very fast during the first part of cell's life span in circulation. This decay is not due to accumulation of inactive enzyme molecules, as shown by immunological studies, but is accompanied by the formation of secondary isozymes (i.e., chemically modified forms). Electrophoretic and ion-exchange chromatographic experiments show that glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9) consists of only one isozymic form in young erythrocytes but is present in two components, with different electric charge, in mature and old cells. This secondary isozyme is more stable to heat treatment and is inactivated by IgG anti-glucose-6-phosphate isomerase with a lower affinity than the native isozyme. In vitro incubation of homogeneous human glucose-6-phosphate isomerase under conditions known to produce enzyme deamination does not reproduce the isozymic pattern found in erythrocytes, suggesting that one or more mechanisms other than those previously described to explain glucose-6-phosphate isomerase microheterogeneity occur in the human erythrocyte.  相似文献   

16.
Distributions of acylphosphatase isozymes among organs of several animal species were investigated. Organ extracts of pig and chicken were treated with isozyme-specific antibodies, subjected to electrophoresis on a polyacrylamide gel, then the gel was stained for acylphosphatase activity. Both animals showed three activity bands; one band was named common type isozyme because of its wide distribution in testis, muscle, brain, heart, spleen, kidney, liver, and erythrocyte, and the other two bands were named muscle type isozymes because of their localization in skeletal muscle. This classification was supported by selective and quantitative reactions of the isozymes to the isozyme-specific antibodies. Because the two bands of the muscle type have the same amino acid sequence and differ only in modifications on an -SH group, it is suggested that pig and chicken have only the two major types of acylphosphatase. This conclusion was supported by similar experiments on dog, human, rabbit, and pigeon.  相似文献   

17.
天麻生长过程中酸性磷酸酶的研究   总被引:1,自引:0,他引:1  
以蜜环菌(Armillaria mellea)伴生的天麻(Gastrodia elata)块茎为材料,研究了天麻生长发育过程中酸性磷酸酶(ACP)活性及其同工酶的变化。结果表明,在天麻生长90d时,其酶谱中有3条谱带,且均显色较弱;生长至120d时,其酶谱与生长90d的酶谱相同,但谱带显色加深;而在生长150d时,酶谱中缺少了一条Rf 0.852的谱带。在90~150d的天麻生长发育过程中,酸性磷酸酶(ACP)活性呈现先升高后下降的趋势。讨论了酸性磷酸酶(ACP)同工酶变化的生理学意义。  相似文献   

18.
Human red cell acid phosphatase isozymes encoded by three alleles (ACP1*A, ACPI*B and ACP1*C), each of which generates two isozymes, (f) and (s), were purified to homogeneity. The molecular mass of the six isozymes (Af, As, Bf, Bs, Cf and Cs) was estimated to be 17-18 kDa, the mass of the f isozymes probably being slightly higher than that of the s isozymes. It was indicated that the isozymes react with p-nitrophenyl phosphate in the mono anionic state, and that a group with a pKa value of about 6, which may be histidine, is of importance for the catalytic function of the s isozymes. Significant differences between the f and s isozymes were observed with respect to specific activity. Km (p-nitrophenyl phosphate), Ki (p-aminobenzylphosphonic acid), amino acid composition, stability in the presence of urea, thermal stability, retention time in size-exclusion chromatography of the native isozymes and migration in sodium dodecyl sulphate polyacrylamide gel electrophoresis, In contrast, identical or similar properties were observed for the three genetically different f isozymes, and the same was the case for the three s isozymes. It is suggested that the f and s isozymes serve different functions in the cell.  相似文献   

19.
The isozyme pattern of pyruvate kinase in canine erythrocytes changes following birth. These changes have been followed by electrophoretic, immunologic, and kinetic measurements of the isozymes. At birth, a mixture of isozymes is present consisting of the M2 isozyme and hybrid molecules containing M2 and R subunits. With increasing animal age, the content of M2 subunits decreases and the content of R subunits increases. At 6 months of age, the isozyme pattern is indistinguishable from that of adult erythrocytes which contain only the R tetramer. We conclude that there is a switch in erythrocyte pyruvate kinase gene expression during the first 6 months of postnatal life. The existence of hybrid molecules during the switch indicates that both M2 and R genes are expressed within each erythroid precursor cell. The developmental changes in erythrocyte pyruvate kinase are consistent with the role of this enzyme in the regulation of the oxygen-transport function of canine hemoglobin by 2,3-diphosphoglycerate in the postnatal period.This research was supported by Public Health Service Grant HD-10595.  相似文献   

20.
The carbonic anhydrases reversibly hydrate carbon dioxide to yield bicarbonate and hydrogen ion. They have a variety of physiological functions, although the specific roles of each of the 10 known isozymes are unclear. Carbonic anhydrase isozyme III is particularly rich in skeletal muscle and adipocytes, and it is unique among the isozymes in also exhibiting phosphatase activity. Previously published studies provided evidence that the phosphatase activity was intrinsic to carbonic anhydrase III, that it had specificity for tyrosine phosphate, and that activity was regulated by reversible glutathionylation of cysteine186. To study the mechanism of this phosphatase, we cloned and expressed the rat liver carbonic anhydrase III. The purified recombinant had the same specific activity as the carbonic anhydrase purified from rat liver, but it had virtually no phosphatase activity. We attempted to identify an activator of the phosphatase in rat liver and found a protein of approximately 14 kDa, the amount of which correlated with the phosphatase activity of the carbonic anhydrase III fractions. It was identified as liver fatty acid binding protein, which was then purified to test for activity as an activator of the phosphatase and for protein-protein interaction, but neither binding nor activation could be demonstrated. Immunoprecipitation experiments established that carbonic anhydrase III could be separated from the phosphatase activity. Finally, adding additional purification steps completely separated the phosphatase activity from the carbonic anhydrase activity. We conclude that the phosphatase activity previously considered to be intrinsic to carbonic anhydrase III is actually extrinsic. Thus, this isozyme exhibits only the carbon dioxide hydratase and esterase activities characteristic of the other mammalian isozymes, and the phosphatase previously shown to be activated by glutathionylation is not carbonic anhydrase III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号