首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Phanerochaete chrysosporium decolourised 6 out of 9 synthetic textile dyes tested in the presence of glucose. 3 textile dyes were decolourised in the absence of a primary carbon source. Decolourisation of an artificial textile effluent was complete after 7 days, however, the role of lignin peroxidase was unclear.  相似文献   

2.
The catalytic properties of a versatile peroxidase from Pleurotus ostreatus D1 (Jacquin) P. Kummer were studied in comparison with that of a typical versatile peroxidase from Bjerkandera fumosa 137 (Per.:Fr) Karst. Decolourisation activities of both enzymes towards a wide range of dyes containing condensed aromatic rings (anthraquinone- and anthracene-type) were found. The anthraquinone dyes were decolourised rapidly by both tested peroxidases. The presence of polymerisation reaction products of Acid Blue 62, Basic Blue 22 and Reactive Blue 4 oxidation, and breakdown of aromatic rings of Alizarin Red were observed. The main catalytic constants (KM and Vmax) of the decolourisation reactions of anthraquinone dyes were calculated. In the case of Alizarin Red, inhibition of the activity of versatile peroxidase from P. ostreatus D1 by an excess of the substrate was observed. Independence from Mn2+ ions of the catalytic activity of versatile peroxidase from P. ostreatus D1 towards different substrates was revealed. Finally, differences in the catalytic activity towards anthracene-type dyes and monoaromatic substrates of both peroxidases were found.  相似文献   

3.
Grape seeds were used by Trametes hirsuta as a substrate for laccase production giving 23 kU l–1, which was 10-fold the value attained in the cultures with no lignocellulosic waste addition. The dyes, Indigo Carmine and Bromophenol Blue, were easily decolourised (100% in 24 h) by the extracellular liquid obtained in such cultures, whereas Methyl Orange (65% in 24 h) and Phenol Red (36% in 24 h) were more resistant to degradation. This shows the specificity of laccase towards different dye structures.  相似文献   

4.
A novel strain of Bjerkandera sp. (B33/3), with particularly high decolourisation activities upon Poly R-478 and Remazol Brilliant Blue R (RBBR) dyes, was isolated. The role of the ligninolytic extracellular enzymes produced by this strain on decolourisation of RBBR was studied in some depth. The basis of decolourisation is an enzyme-mediated process, in which the main enzyme responsible is a recently described peroxidase with capacity for oxidation of manganese, as well as veratryl alcohol and 2,6-dimethoxyphenol in a manganese-independent reaction.  相似文献   

5.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

6.
Two bioreactor continuous cultures, at anaerobic and aerobic conditions, were carried out using a recombinant Saccharomyces cerevisiae strain that over-expresses the homologous gene EXG1. This recombinant system was used to study the effect of dissolved oxygen concentration on plasmid stability and gene over-expression. Bioreactor cultures were operated at two dilution rates (0.14 and 0.03 h–1) to investigate the effect of other process parameters on EXG1 expression. Both cultures suffered severe plasmid instability during the first 16 generations. Segregational plasmid loss rate for the aerobic culture was two-fold that of the anaerobic operation. In spite of this fact, exo--glucanase activity at aerobic conditions was 12-fold that of the anaerobic culture. This maximal activity (30 U ml–1) was attained at the lowest dilution rate when biomass reached its greatest value and glucose concentration was zero.  相似文献   

7.
Synthetic textile dyes are among the most dangerous chemical pollutants released in industrial wastewater streams. Recognizing the importance of reducing the environmental impact of these dyes, the ability of the white rot fungus Phanerochaete chrysosporium to decolorize various textile dyes was investigated. This fungus decolorized 6 of the 14 structurally diverse dyes with varying efficiency (between 14% and 52%). There was no discernable pattern of decolorization even among dyes of the same chemical class, suggesting that attack on the dyes is relatively non-specific. Among the three dyes which showed >40% decolorization, Victoria Blue B (VB) was chosen for further analysis because the ability of the fungus to decolorize VB was nearly independent over a relatively broad concentration range. Blocking lignin peroxidase (LiP) and manganese peroxidase (MnP) production by the fungus did not substantially affect VB decolorization. Inhibition of laccase production by adding various inhibitors to shaken cultures reduced VB decolorization significantly suggesting a role for laccase in VB decolorization. When sodium azide and aminotriazole were used to inhibit endogenous catalase and cytochrome P-450 oxygenase activities, there was 100% and 70% reduction in VB decolorization, respectively. Adding benzoate to trap hydrogen peroxide-derived hydroxyl radicals resulted in 50% decolorization of VB. Boiling the extracellular fluid (ECF) for 30 min resulted in approximately 50% reduction in VB decolorization. Collectively, these data suggest that laccase, and/or oxygenase/oxidase and a heat-stable non-enzymatic factor, but not Lip and MnP, play a role in VB decolorization by P. chrysosporium.  相似文献   

8.
Maximum activities of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) in free cultures of Phanerochaete chrysosporium (ATCC 24725) were 258 U l–1 and 103 U l–1, respectively, in an airlift bioreactor. Immobilisation of the fungus on an inert carrier as well as several design modifications of the bioreactor employed gave MnP activities around 500–600 U l–1 during 9 days' operation. The continuous operation of the latter led to MnP and LiP activities about 140 U l–1 and 100 U l–1, respectively, for two months, without operational problems. Furthermore, the extracellular liquid secreted decolourised the polymeric dye Poly R-478 about 56%.  相似文献   

9.
The potential of ligninolytic enzymes, including lignin peroxidase (LiP) as the main enzyme from the spent mushroom substrate of Pleurotus sajor-caju was evaluated for the decolourisation of five dyes from azo and anthraquinone dye groups. Among the azo dyes, reactive black 5 and reactive orange 16 were 84.0 and 80.9% decolourised respectively, after 4 h of incubation with 45 U of LiP as compared to 32.1% decolourisation of disperse blue 79. Among the anthraquinone dyes, disperse red 60 was decolourised to 47.2% after 4 h of incubation with 45 U of LiP as compared to 5.9% decolourisation of disperse blue 56. Increasing the LiP concentration and incubation time had a positive effect on the decolourisation of anthraquinone dyes as compared to azo dyes. A 67.9% decolourisation of synthetic textile waste-water was achieved after 4 h of incubation with 25 U of LiP. Increasing the incubation time significantly increased (P < 0.05) the decolourisation of synthetic textile waste-water. Further, there was a 52.4% reduction in the toxicity of synthetic textile waste-water treated with 55 U of LiP for 4 h. However, only 35.7% reduction in toxicity was achieved when the synthetic textile waste-water was treated with 55 U of LiP for 24 h. In this study, it was shown that the spent mushroom substrate of P. sajor-caju could be a cheap source of ligninolytic enzymes for the decolourisation of dyes in textile industry wastewaters.  相似文献   

10.
Biodecolourisation of some industrial dyes by white-rot fungi   总被引:1,自引:0,他引:1  
Eight white-rot fungal strains were screened for biodecolourisation of eight dyes commercially employed in various industries. Decolourisation of Poly R 478 was used as a standard to ascertain the dye-decolourisation potential of various fungi. All the fungi tested significantly decolourised Poly R 478 on solid agar medium. When tested in a nitrogen-limited broth medium, Dichomitus squalens, Irpex flavus, Phlebia spp. and Polyporus sanguineus were better industrial dye decolourisers than Phanerochaete chrysosporium.  相似文献   

11.
The autolysis of chlamydospore-like cells in Phanerochaete chrysosporium immobilized in polyurethane foam correlated with the production of manganese peroxidase (MnP). The maximum specific activity of MnP was 1055 U g dry mycelium–1 in the immobilized culture, compared with 260 U g dry mycelium–1 in the submerged culture. Scattered mycelial pellets were formed in the immobilized culture in which almost all of the chlamydospore-like cells were subject to autolysis. However, highly crowded pellets were formed in the free culture, in which only the chlamydospore-like cells in the exterior were subject to autolysis. We propose that the enhanced production of MnP in immobilized cultures of P. chrysosporium is due to increased autolysis of the chlamydospore-like cells.  相似文献   

12.
Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (; F/Fm), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 mol m–2 s–1) than in the gap site (5 mol m–2 s–1), whereas that in N. heimii was lower in the open site (2 mol m–2 s–1) than in the gap site (4 mol m–2 s–1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plants regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.  相似文献   

13.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

14.
The degradation of Navitan Fast Blue S5R, a very important commercial diazo dye in the tannery and textile industries was investigated. Pseudomonas aeruginosa decolourized this dye at concentrations upto 1200 mg l–1 and the organism was also able to decolourize various other tannery dyes at different levels. The organism required ammonium salts and glucose to co-metabolize the dye. Organic nitrogen sources did not support appreciable decolourization whereas, combined with inorganic nitrogen (NH4NO3) there was an increased effect on both growth and decolourization. Decolourization of this dye started when the organism reached late exponential growth phase and after 24 h of incubation nearly 90% of 100 mg l–1 of the dye was decolourized. An oxygen insensitive azoreductase was involved in the decolourization mechanism. HPLC analysis confirmed the formation of metanilic acid from the dye, which on further incubation was completely metabolized under shaken culture condition.  相似文献   

15.
Four recently described species, Fusarium nygamai, F. dlamini, F. beomiforme and F. napiforme and two uncertain taxa, F. nygamai from millet in Africa and Fusarium species from rice with Bakanae disease, were tested for toxicity and moniliformin production. Cultures grown on autoclaved corn were fed to groups of four one-day-old ducklings for 14 days. Isolates that caused the death of 3 or 4 out of 4 ducklings were considered to be toxic and analyzed for moniliformin. All 15 isolates of F. dlamini tested were nontoxic. The other taxa contained some isolates that were toxic to ducklings and produced moniliformin in corn cultures. This is the first report of moniliformin production by F. beomiforme (200–890 g/g), and F. napiforme (16–388 g/g), and by F. nygamai not obtained from millet in Africa (15–874 g/g). The highest production of moniliformin was obtained from the 19 isolates of F. nygamai from millet in Africa (4300–18200g/g) and the 15 isolates from rice with Bakanae disease (2300–19300 g/g). The taxonomic position of these two uncertain taxa should be re-evaluated.  相似文献   

16.
Dissimilatory metal reducing bacteria can exchange electrons extracellularly and hold great promise for their use in simultaneous wastewater treatment and electricity production. This study investigated the role of riboflavin, an electron carrier, in the decolourisation of Congo red in microbial fuel cells (MFCs) using Shewanella oneidensis MR-1 as a model organism. The contribution of the membrane-bound protein MtrC to the decolourisation process was also investigated. Within the range of riboflavin concentrations tested, 20 µM was found to be the best with >95% of the dye (initial concentration 200 mg/L) decolourised in MFCs within 50 h compared to 90% in the case where no riboflavin was added. The corresponding maximum power density was 45 mW/m2. There was no significant difference in the overall decolourisation efficiencies of Shewanela oneidensis MR-1 ΔMtrC mutants compared to the wild type. However, in terms of power production the mutant produced more power (Pmax 76 mW/m2) compared to the wild type (Pmax 46 mW/m2) which was attributed to higher levels of riboflavin secreted in solution. Decolourisation efficiencies in non-MFC systems (anaerobic bottles) were similar to those under MFC systems indicating that electricity generation in MFCs does not impair dye decolourisation efficiencies. The results suggest that riboflavin enhances both decolourisation of dyes and simultaneous electricity production in MFCs.  相似文献   

17.
The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l–1, intracellular AQ content at 42 mg g–1 DW, and H2O2 level at 9 mol g–1 FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g–1 FW and total carotenoids at 13.3 mg g–1 FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30–120 g g–1 FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400–500 g g–1 FW in 7-day-old cultures from all medium strategies and reduced to 50–150 g g–1 FW on day 14 and 21; as compared to 60 g g–1 FW in callus and 200 g g–1 FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.Abbreviations AQ Anthraquinone - DW Dry cell weight - FW Fresh cell weight - G Intermediary medium - M Maintenance medium - MDA Malondialdehyde - P Production medium - ROS Reactive oxygen species - TBA Thiobarbituric acid - td Doubling time  相似文献   

18.
Two cultures, a yeast (Rhodorula rubra GED8) and a yogurt starter (Lactobacillus bulgaricus 2–11+Streptococcus thermophilus 15HA), were selected for associated growth in whey ultrafiltrate (WU) and active synthesis of carotenoids. In associated cultivation with the yogurt culture L bulgaricus 2–11+S. thermophilus 15HA under intensive aeration (1.3 l–1min–1 air-flow rate) in WU (45 g lactose l–1), initial pH 5.5, 30 °C, the lactose-negative strain R. rubra GED8 synthesized large amounts of carotenoids (13.09 mg l–1 culture fluid). The carotenoid yield was approximately two-fold higher in association with a mixed yogurt culture than in association with pure yogurt bacteria. The major carotenoid pigments comprising the total carotenoids were -carotene (50%), torulene (12.3%) and torularhodin (35.2%). Carotenoids with a high -carotene content were produced by the microbial association 36 h earlier than by Rhodotorula yeast species. No significant differences were notd in the ratio between the pigments synthesized by R. rubra GED8+L. bulgaricus 2–11, R. rubra GED8+S. thermophilus 15HA, and R.rubra GED8+yogurt culture, despite the fact that the total carotenoid concentrations were lower in the mixed cultures with pure yogurt bacteria.  相似文献   

19.
Of seven fungal strains tested for their ability to decolourise three structurally diverse synthetic dyes, Phanerochaete sordida, Bjerkandera sp. BOS55, Phlebia radiata, and Phanerochaete chrysosporium had average values of maximum decolourisation rates higher than 0.2 [Absorbance] d–1. All seven fungi produced manganese peroxidase (MnP) but laccase activity was detected only in Phlebia radiata. No lignin peroxidase (LiP) activity was observed.  相似文献   

20.
To develop an effective fermentation system for producing Escherichia coliphytase AppA2, we expressed the enzyme in three inducible yeast systems: Saccharomyces cerevisiae (pYES2), Schizosaccharomyces pombe (pDS472a), and Pichia pastoris (pPICZ A), and one constitutive system: P. pastoris (pGAPZA). All four systems produced an extracellular functional AppA2 phytase with apparent molecular masses ranging from 51.5 to 56 kDa. During 8-day batch fermentation in shaking flasks, the inducible Pichia system produced the highest activity (272 units ml–1 medium), whereas the Schizo. pombesystem produced the lowest activity (2.8 units ml–1). The AppA2 phytase expressed in Schizo. pombehad 60–75% lower Kmfor sodium phytate and 28% higher heat-stability at 65 °C than that expressed in other three systems. However, all four recombinant AppA2 phytases had pH optimum at 3.5 and temperature optimum at 55 °C and similar efficacy in hydrolyzing phytate–phosphate from soybean meal.Revisions requested 18 November 2004; Revisions received 7 January 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号