首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Allele epsilon4 of the nuclear APOE gene is a leading genetic risk factor for sporadic Alzheimer's disease (AD). Moreover, an allele-specific effect of APOE isoforms on neuronal cell oxidative death is known. Because of the role of the mitochondrial genome (mtDNA) in oxidative phosphorylation and oxidative stress, an interaction between APOE polymorphism and mtDNA inherited variability in the genetic susceptibility to sporadic AD can be hypothesized. We have explored this hypothesis by analyzing mtDNA germline variants (mtDNA haplogroups) in a sample of AD patients (213 subjects) genotyped for APOE and classified as APOE epsilon4 carriers and non-carriers. We found that the frequency distribution of mtDNA haplogroups is different between epsilon4 carriers and non-carriers (P=0.018), thus showing non-random association between APOE and mtDNA polymorphisms. The same analysis, carried out in two samples of healthy subjects (179 age-matched and 210 individuals aged more than 100 years), showed independence between epsilon4 allele and mtDNA haplogroups. Therefore, the APOE/mtDNA interaction is restricted to AD and may affect susceptibility to the disease. In particular, some mtDNA haplogroups (K and U) seem to neutralize the harmful effect of the APOE epsilon4 allele, lowering the epsilon4 odds ratio from statistically significant to non-significant values.  相似文献   

4.
The formation of cyclooxygenase-derived lipid adducts of protein in brains of patients who had Alzheimer's disease has been investigated. The enzymatic product of the cyclooxygenases, prostaglandin H2, rearranges in part to highly reactive gamma-ketoaldehydes, levuglandin (LG) E(2) and LGD(2). These gamma-ketoaldehydes react with free amines on proteins to yield a covalent adduct. Utilizing analysis of the levuglandinyl-lysine adducts by liquid chromatography-tandem mass spectrometry, we now find that this post-translational modification is increased significantly in the hippocampus in Alzheimer's disease. The magnitude of the increase correlates with the pathological evidence of severity.  相似文献   

5.
6.
The relationship between Alzheimer's disease (AD) and depression has been well established in terms of epidemiological and clinical observations. Depression has been considered to be both a symptom and risk factor of AD. Several genetic and neurobiological mechanisms have been described to underlie these two disorders. Despite the accumulating knowledge on this topic, the precise neuropathological mechanisms remain to be elucidated. In this study, we propose that synaptic degeneration plays an important role in the disease progression of depression and AD. Using primary culture of hippocampal neurons treated with oligomeric Aβ and corticosterone as model agents for AD and depression, respectively, we found significant changes in the pre-synaptic vesicle proteins synaptophysin and synaptotagmin. We further investigated whether the observed protein changes affected synaptic functions. By using FM®4-64 fluorescent probe, we showed that synaptic functions were compromised in treated neurons. Our findings led us to investigate the involvement of protein degradation mechanisms in mediating the observed synaptic protein abnormalities, namely, the ubiquitin–proteasome system and autophagy. We found up-regulation of ubiquitin-mediated protein degradation, and the preferential signaling for the autophagic–lysosomal degradation pathway. Lastly, we investigated the neuroprotective role of different classes of antidepressants. Our findings demonstrated that the antidepressants Imipramine and Escitalopram were able to rescue the observed synaptic protein damage. In conclusion, our study shows that synaptic degeneration is an important common denominator underlying depression and AD, and alleviation of this pathology by antidepressants may be therapeutically beneficial.  相似文献   

7.
8.
9.
Alzheimer's disease (AD), the major dementing disorder of the elderly, is associated with cholinergic neuronal loss and decreased activity of choline acetyl-transferase (CAT). Previous biophysical studies had suggested an altered conformation of membrane proteins in AD erythrocyte ghosts. Since erythrocytes have a choline transport system and cholinergic neurons are implicated in AD, the present experiments were undertaken to determine if the efflux rate of [14C]choline was altered in AD erythrocytes. The mean efflux rate constant was highly significantly increased (P<0.01) by greater than 25% in 9 drug-free AD patients compared to 9 sex-matched, drug-free controls of similar age. These results are discussed in terms of potential molecular mechanisms to account for cholinergic neuronal loss in AD.  相似文献   

10.
Structurally and functionally active synapses are essential for neurotransmission and for maintaining normal synaptic and cognitive functions. Researchers have found that synaptic dysfunction is associated with the onset and progression of neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic dysfunction is even one of the main physiological hallmarks of AD. MiRNAs are present in small, subcellular compartments of the neuron such as neural dendrites, synaptic vesicles, and synaptosomes are known as synaptic miRNAs. Synaptic miRNAs involved in governing multiple synaptic functions that lead to healthy brain functioning and synaptic activity. However, the precise role of synaptic miRNAs has not been determined in AD progression. This review emphasizes the presence of miRNAs at the synapse, synaptic compartments and roles of miRNAs in multiple synaptic functions. We focused on synaptic miRNAs alteration in AD, and how the modulation of miRNAs effect the synaptic functions in AD. We also discussed the impact of synaptic miRNAs in AD progression concerning the synaptic ATP production, mitochondrial function, and synaptic activity.  相似文献   

11.
Autoantibodies directed against citrulline-containing proteins have an impressive specificity of nearly 100% in patients with rheumatoid arthritis and have been suggested to be involved in the disease pathogenesis. The targeted epitopes are generated by a post-translational modification catalysed by the calcium-dependent enzyme peptidyl arginine deiminase (PAD), which converts positively charged arginine to polar but uncharged citrulline. The aim of this study was to explore the effects of citrullination on the immunogenicity of autoantigens as well as on potential arthritogenicity. Thus, immune responses to citrullinated rat serum albumin (Cit-RSA) and to unmodified rat serum albumin (RSA) were examined as well as arthritis development induced by immunisation with citrullinated rat collagen type II (Cit-CII) or unmodified CII. In addition, to correlate the presence of citrullinated proteins and the enzyme PAD4 with different stages of arthritis, synovial tissues obtained at different time points from rats with collagen-induced arthritis were examined immunohistochemically. Our results demonstrate that citrullination of the endogenous antigen RSA broke immunological tolerance, as was evident by the generation of antibodies directed against the modified protein and cross-reacting with the native protein. Furthermore we could demonstrate that Cit-CII induced arthritis with higher incidence and earlier onset than did the native counterpart. Finally, this study reveals that clinical signs of arthritis precede the presence of citrullinated proteins and the enzyme PAD4. As disease progressed into a more severe and chronic state, products of citrullination appeared specifically in the joints. Citrullinated proteins were detected mainly in extracellular deposits but could also be found in infiltrating cells and on the cartilage surface. PAD4 was detected in the cytoplasm of infiltrating mononuclear cells, from day 21 after immunisation and onwards. In conclusion, our data reveal the potency of citrullination to break tolerance against the self antigen RSA and to increase the arthritogenic properties of the cartilage antigen CII. We also show that citrullinated proteins and the enzyme PAD4 are not detectable in healthy joints, and that the appearance and amounts in arthritic joints of experimental animals are correlated with the severity of inflammation.  相似文献   

12.
13.
Eleven demented patients were administered .004, .009, and .013 mg/kg physostigmine intramuscularly, and placebo, double-blind, in Phase 1. The most effective dose, in terms of showing the best memory score as compared to saline, was repeated during Phase 2. Five patients improved their verbal memory scores in both Phases 1 and 2 after the most effective dose of physostigmine; these five "responders" were found to be significantly more demented than the six "nonresponders." Drug-induced increases in memory scores were significantly correlated with illness severity. Intrusions, which were not a factor in selection of the most effective dose, were reduced in the group as a whole, with the responders showing the most improvement and the nonresponders the least. The association between physostigmine effect and degree of dementia suggests to us that the severe cases may have more permeable blood-brain barriers, and that drug availability to the brain is an important factor in evaluating treatment of SDAT with cholinergic substances.  相似文献   

14.
It has been proposed that mitochondrial dysfunction and excitotoxic mechanisms lead to oxidative damage in the brain of Huntington;s disease patients. We sought evidence that increased oxidative damage occurs by examining postmortem brain material from patients who had died with clinically and pathologically diagnosed Huntington's disease. Oxidative damage was measured using methods that have already demonstrated the presence of increased oxidative damage in Parkinson's disease, Alzheimer's disease, and senile dementia of the Lewy body type. No alterations in the levels of lipid peroxidation (as measured by lipid peroxides and thiobarbituric acid-malondialdehyde adducts) were found in the caudate nucleus, putamen, or frontal cortex of patients with Huntington's disease compared with normal controls. Similarly, there were no elevations in the levels of 8-hydroxyguanine or of a wide range of other markers of oxidative DNA damage. Levels of protein carbonyls in these tissues were also unaltered. Our data suggest that oxidative stress is not a major component of the degenerative processes occurring in Huntington's disease, or at least not to the extent that occurs in other neurodegenerative disorders.  相似文献   

15.
The cholesteryl ester transfer protein (CETP) gene plays an essential role in regulating cholesterol homeostasis and is a candidate susceptibility gene for late-onset Alzheimer's disease (AD). Recent finding suggests that the CETP I405V polymorphism (rs5882) is associated with a slower rate of memory decline and a lower risk of incident dementia. Using data from two ongoing epidemiologic clinical-pathologic cohort studies of aging and dementia in the United States, the Religious Order Study and the Memory and Aging Project, we evaluated the association of the CETP I405V polymorphism (rs5882) with cognitive decline and risk of incident AD in more than 1300 participants of European ancestry. Our results suggest that the CETP I405V polymorphism was associated with a faster rather than a slower rate of decline in cognition over time, and an increased risk of incident AD. This finding is consistent with data showing that the CETP I405V is associated with increased neuritic plaque density at autopsy.  相似文献   

16.
Checler F 《IUBMB life》1999,48(1):33-39
Early-onset aggressive forms of Alzheimer's disease (AD) are of genetic nature and have been linked to inherited mutations located on chromosomes 21, 14, and 1. The gene products of chromosomes 14 and 1, which are responsible for most of these familial forms of the disease (FAD), have been recently identified and referred to as presenilin 1 and 2 (PS1, PS2), respectively. Several lines of evidence derived from neuropathological, cell biology, and transgenesis approaches indicate that PS could interfere with the processing of the beta-amyloid precursor protein (betaAPP). Thus, FAD-linked mutations in PS exacerbate the production of Abeta42, the readily aggregable Abeta species corresponding to one of the main constituents of the senile plaques that invade the cortical areas of affected brains. Recent studies indicate that PS functions could be intimately related with the susceptibility of PS to further processing by caspase-like enzymes and other unknown proteolytic activities. Here I briefly report on the post-translational events undergone by PS and examine recent advances concerning their possible roles in development, cell signaling, and apoptosis. Possible alterations brought by FAD-linked mutations will be discussed.  相似文献   

17.
We have characterized a novel monoclonal antibody, Tau-66, raised against recombinant human tau. Immunohistochemistry using Tau-66 reveals a somatic-neuronal stain in the superior temporal gyrus (STG) that is more intense in Alzheimer's disease (AD) brain than in normal brain. In hippocampus, Tau-66 yields a pattern similar to STG, except that neurofibrillary lesions are preferentially stained if present. In mild AD cases, Tau-66 stains plaques lacking obvious dystrophic neurites (termed herein 'diffuse reticulated plaques') in STG and the hippocampus. Enzyme-linked immunosorbent assay (ELISA) analysis reveals that Tau-66 is specific for tau, as there is no cross-reactivity with MAP2, tubulin, Abeta(1-40), or Abeta(1-42), although Tau-66 fails to react with tau or any other polypeptide on western blots. The epitope of Tau-66, as assessed by ELISA testing of tau deletion mutants, appears discontinuous, requiring residues 155-244 and 305-314. Tau-66 reactivity exhibits buffer and temperature sensitivity in an ELISA format and is readily abolished by SDS treatment. Taken together these lines of evidence indicate that the Tau-66 epitope is conformation-dependent, perhaps involving a close interaction of the proline-rich and the third microtubule-binding regions. This is the first indication that tau can undergo this novel folding event and that this conformation of tau is involved in AD pathology.  相似文献   

18.
Plasma phospholipid transfer protein (PLTP) is one of the key proteins in lipid and lipoprotein metabolism. We examined PLTP distribution in human brain using PLTP mRNA dot-blot, Northern blot, immunohistochemistry (IHC), Western blot, and phospholipid transfer activity assay analyses. PLTP mRNA of 1.8 kb was widely distributed in all the examined regions of the central nervous system at either comparable or slightly lower levels than in the other major organs, depending on the region. Cerebrospinal fluid phospholipid transfer activity represented 15% of the plasma activity, indicating active PLTP synthesis in the brain. Western blot and phosholipid transfer activity assay demonstrated secretion of active PLTP by neurons, microglia, and astrocytes in culture. IHC demonstrated PLTP presence in neurons, astrocytes, microglia, and oligodendroglia. Some neuronal groups, such as nucleus hypoglossus and CA2 neurons in hippocampus, ependymal layer, and choroid plexus were particularly strongly stained, with substantial glial and neuropil immunostaining throughout the brain. Comparison between brain tissues from patients with Alzheimer's disease (AD) and nonAD subjects revealed a significant increase (P = 0.02) in PLTP levels in brain tissue homogenates and increased PLTP immunostaining in AD.  相似文献   

19.
Myeloperoxidase, a heme protein expressed by professional phagocytic cells, generates an array of oxidants which are proposed to contribute to tissue damage during inflammation. We now report that enzymatically active myeloperoxidase and its characteristic amino acid oxidation products are present in human brain. Further, expression of myeloperoxidase is increased in brain tissue showing Alzheimer's neuropathology. Consistent with expression in phagocytic cells, myeloperoxidase immunoreactivity was present in some activated microglia in Alzheimer brains. However, the majority of immunoreactive material in brain localized with amyloid plaques and, surprisingly, neurons including granule and pyramidal neurons of the hippocampus. Confirming neuronal localization of the enzyme, several neuronal cell lines as well as primary neuronal cultures expressed myeloperoxidase protein. Myeloperoxidase mRNA was also detected in neuronal cell lines. These results reveal the unexpected presence of myeloperoxidase in neurons. The increase in neuronal myeloperoxidase expression we observed in Alzheimer disease brains raises the possibility that the enzyme contributes to the oxidative stress implicated in the pathogenesis of the neurodegenerative disorder.  相似文献   

20.
Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号