首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Electron microscopy and immunogold labelling with monoclonal antibody (McAb) Bfl identified an antigen expressed on some in vitro and in vivo grown Bacteroides fragilis NCTC9343 cells.
Immunoprecipitation with this McAb was used to enrich for B. fragilis NCTC9343 cells expressing the Bfl antigen. The McAb Bfl bound to an epitope close to the surface of the outer membrane, but the fibrous capsular network radiating from the bacterial surface was not labelled. Analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting identified 3 high- M r bands which resisted heating and protease digestion but were partially sensitive to sodium periodate treatment.  相似文献   

2.
Abstract Four outer membrane proteins were purified to homogeneity from isolated outer membranes of Bacteroides fragilis ; three ( M r 51000, 92000 and 125 000) had pore-forming activity in reconstituted liposomes as determined by swelling assay. Membrane vesicles containing the M rmr 55 000 outer membrane protein showed no detectable pore-forming activity. The three B. fragilis porins formed pores that allowed the penetration of uncharged saccharides of M r lower than 340–400, even though the efficiency of solute diffusion showed slight differences. The diffusion rates of glucose through the porins appeared to be lower than those through Escherichia coli porins.  相似文献   

3.
The transmembrane diffusion of hydrophobic antimicrobial agents, e.g. lincomycin and clindamycin, was examined in Bacteroides fragilis which is sensitive to these agents. The results showed that these agents penetrate efficiently through the outer membrane. Cell surface hydrophobicity measured by the partition assay between water and p-xylene revealed that the cell surface of B. fragilis is more hydrophobic than that of Salmonella typhimurium or Pseudomonas aeruginosa. Furthermore, treatment with low concentrations of surfactant caused cell lysis. These results suggest that the cell surface hydrophobicity in B. fragilis plays an important role in the efficient transmembrane penetration of hydrophobic compounds. This efficiency explains the susceptibility of B. fragilis to hydrophobic antimicrobial agents.  相似文献   

4.
Thermosipho globiformans is a member of Thermotogales, which contains rod-shaped, Gram-negative, anaerobic (hyper)thermophiles. These bacteria are characterized by an outer sheath-like envelope, the toga, which includes the outer membrane and an amorphous layer, and forms large periplasm at the poles of each rod. The cytoplasmic membrane and its contents are called “cell”, and the toga and its contents “rod”, to distinguish between them. Optical cells were constructed to observe binary fission of T. globiformans. High-temperature microscopy of rods adhering to optical cells' coverslips showed that the large periplasm forms between newly divided cells in a rod, followed by rod fission at the middle of the periplasm, which was accompanied by a sideward motion of the newly generated rod pole(s). Electron microscopic observations revealed that sessile rods grown on a glass plate have nanotubes adhered to the glass, and these may be involved in the sideward motion. Epifluorescence microscopy with a membrane-staining dye suggested that formation of the septal outer membrane is distinct from cytokinesis. Transmission electron microscopy indicated that the amorphous layer forms in the periplasm between already-divided cells. These findings suggest that the large periplasm is the structure in which the septal toga forms, an event separate from cytokinesis.  相似文献   

5.
Knox, K. W. (Twyford Laboratories, London, England), Maret Vesk, and Elizabeth Work. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92:1206-1217. 1966.-The lysine-requiring mutant Escherichia coli 12408, when grown in 15 liters of defined medium containing a suboptimal amount of lysine, showed a biphasic type of growth. During a long stationary phase of 15 hr, there was a steady accumulation of diaminopimelic acid (DAP) and an antigenic complex of lipopolysaccharide (LPS) and lipoprotein; the accumulation continued unchanged until the end of the second growth phase. The rapid rate of DAP excretion suggested that it was the result of a derepressed state of a biosynthetic pathway. LPS excretion was such that the amount in the culture fluid was doubled during a period corresponding to the normal generation time for the organism; this suggested that the LPS-lipoprotein complex was a product of unbalanced growth. Surface defects were suggested by the action of lysozyme, which, in low concentrations (10 mug/ml), lysed the lysine-limited cells even in the absence of ethylenediaminetetraacetic acid, but had no effect at 10 mug/ml on cells grown with adequate lysine. Electron microscopy of cells excreting the LPS complex showed them to be surrounded by a mass of stacked leaflets and globules, some of which were bounded by triple membranes. Sections showed no lysis but changes in cell surfaces; outer layers of the walls had numerous blebs whose outer membranes were sometimes continuous with the outer triple membrane of the wall. LPS-lipoprotein probably originates from these blebs.  相似文献   

6.
Xenorhabdus nematophilus secretes a large number of proteins into the culture supernatant as soluble proteins and also as large molecular complexes associated with the outer membrane. Transmission electron micrographs of X. nematophilus cells showed that there was blebbing of the outer membrane from the surface of the bacterium. The naturally secreted outer membrane vesicles (OMVs) were purified from the culture supernatant of X. nematophilus and analyzed. Electron microscopy revealed a vesicular organization of the large molecular complexes, whose diameters varied from 20 to 100 nm. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of the vesicles showed that in addition to outer membrane proteins, several other polypeptides were also present. The membrane vesicles contained lipopolysaccharide, which appeared to be of the smooth type. Live cells of X. nematophilus and the OMV proteins derived from them exhibited oral insecticidal activity against neonatal larvae of Helicoverpa armigera. The proteins present in the OMVs are apparently responsible for the biological activity of the OMVs. The soluble proteins left after removal of the OMVs and the outer membrane proteins also showed low levels of oral toxicity to H. armigera neonatal larvae. The OMV protein preparations were cytotoxic to Sf-21 cells in an in vitro assay. The OMV proteins showed chitinase activity. This is the first report showing toxicity of outer membrane blebs secreted by the insect pathogen X. nematophilus into the extracellular medium.  相似文献   

7.
T Gutsmann  J W Larrick  U Seydel  A Wiese 《Biochemistry》1999,38(41):13643-13653
The mechanism of interaction of the cationic antimicrobial protein (18 kDa), CAP18, with the outer membrane of Gram-negative bacteria was investigated applying transmission electron microscopy and voltage-clamp techniques on artificial planar bilayer membranes. Electron micrographs of bacterial cells exposed to CAP18 showed damage to the outer membrane of the sensitive Escherichia coli strains F515 and ATCC 11775, whereas the membrane of the resistant Proteus mirabilis strain R45 remained intact. Electrical measurements on various planar asymmetric bilayer membranes, one side consisting of a phospholipid mixture and the other of different phospholipids or of lipopolysaccharide (reconstitution model of the outer membrane), yielded information about the influence of CAP18 on membrane integrity. Addition of CAP18 to the side with the varying lipid composition led to lipid-specific adsorption of CAP18 and subsequent induction of current fluctuations due to the formation of transient membrane lesions at a lipid-specific clamp voltage. We propose that the applied clamp voltage leads to reorientation of CAP18 molecules adsorbed to the bilayer into an active transmembrane configuration, allowing the formation of lesions by multimeric clustering.  相似文献   

8.
Fine structure of the cell envelope layers of Flexibacter polymorphus.   总被引:1,自引:0,他引:1  
Electron microscopy of the filamentous gliding marine bacterium Flexibacter polymorphus demonstrated that the cell envelope consists of an electron-dense intermediate layer located between two unit-type membranes: an outer membrane, presumably of lipopolysaccharide, and an inner cytoplasmic membrane. Separation of living filaments into single cells by lysozyme suggests that a peptidoglycan moiety, possibly corresponding to the intermediate layer, might be situated between the two membranes. Cell division proceeds by invagination of the cytoplasmic membrane and intermediate layer forming a transverse septum. Cells generally fail to separate after the division process, so that a common outer membrane encloses all of the cells in a single filament. There is a continuous layer of macromolecular cup-shaped elements ('goblets') attached to the outermost surface of the lipopolysaccharide membrane. Tangential thin sections, as well as negatively stained preparations of envelope fragments (produced by sonication of autolyzed cells), showed that the goblets are arranged in a close-packed hexagonal array. The presence of electron-dense structures located between the outer and inner membranes, and exhibiting the same periodicity as the goblets, suggests that some part of the goblets penetrates the outer membrane and extends across the periplasmic space to the dense intermediate layer or cytoplasmic membrane. Spontaneous autolysis in aging cultures is accompanied by the formation and release into the culture medium of large numbers of outer membrane vesicles coated with globlets. A tentative reconstruction of the envelope of F. polymorphus, based on the fine-structural data, is presented.  相似文献   

9.
10.
To investigate the functional role of protein F of the outer membrane of Pseudomonas aeruginosa, we isolated mutants devoid of protein F, and the defective gene was transferred to a wild-type strain by plasmid FP5-mediated conjugation. Chemical analyses of the protein F-deficient outer membrane revealed that the amount of outer membrane protein was reduced to 72 to 74% of that of the protein F-sufficient strain and that lipopolysaccharides and phospholipids increased to 117 to 123% and 135 to 136%, respectively. The mutants and the transconjugant showed the following characteristics: (i) growth rates of protein F-deficient strains in low-osmolarity medium (e.g., L broth containing 0.1% NaCl) were less than 1/10 the rate of the protein F-sufficient strain; (ii) protein F-deficient cells were rounded, and the outer membrane formed large protruded blebs; and (iii) the outer membrane became physically fragile, since a significant amount of periplasmic proteins leaked out and the cells became highly sensitive to osmotic shock. The results suggested that protein F plays an important role in morphogenesis and in maintaining the integrity of the outer membrane. Determination of the diffusion rates of saccharides and beta-lactam antibiotics showed that the protein F-deficient outer membrane had no detectable transport defect compared with the protein F-sufficient outer membrane. The MICs of antibiotics for the protein F-deficient strains were nearly identical to those for the protein F-sufficient strain.  相似文献   

11.
Xenorhabdus nematophilus secretes a large number of proteins into the culture supernatant as soluble proteins and also as large molecular complexes associated with the outer membrane. Transmission electron micrographs of X. nematophilus cells showed that there was blebbing of the outer membrane from the surface of the bacterium. The naturally secreted outer membrane vesicles (OMVs) were purified from the culture supernatant of X. nematophilus and analyzed. Electron microscopy revealed a vesicular organization of the large molecular complexes, whose diameters varied from 20 to 100 nm. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of the vesicles showed that in addition to outer membrane proteins, several other polypeptides were also present. The membrane vesicles contained lipopolysaccharide, which appeared to be of the smooth type. Live cells of X. nematophilus and the OMV proteins derived from them exhibited oral insecticidal activity against neonatal larvae of Helicoverpa armigera. The proteins present in the OMVs are apparently responsible for the biological activity of the OMVs. The soluble proteins left after removal of the OMVs and the outer membrane proteins also showed low levels of oral toxicity to H. armigera neonatal larvae. The OMV protein preparations were cytotoxic to Sf-21 cells in an in vitro assay. The OMV proteins showed chitinase activity. This is the first report showing toxicity of outer membrane blebs secreted by the insect pathogen X. nematophilus into the extracellular medium.  相似文献   

12.
Dodecamerization and insertion of the outer membrane secretin PulD is entirely determined by the C-terminal half of the polypeptide (PulD-CS). In the absence of its cognate chaperone PulS, PulD-CS and PulD mislocalize to the inner membrane, from which they are extractable with detergents but not urea. Electron microscopy of PulD-CS purified from the inner membrane revealed apparently normal dodecameric complexes. Electron microscopy of PulD-CS and PulD in inner membrane vesicles revealed inserted secretin complexes. Mislocalization of PulD or PulD-CS to this membrane induces the phage shock response, probably as a result of a decreased membrane electrochemical potential. Production of PulD in the absence of the phage shock response protein PspA and PulS caused a substantial drop in membrane potential and was lethal. Thus, PulD-CS and PulD assemble in the inner membrane if they do not associate with PulS. We propose that PulS prevents premature multimerization of PulD and accompanies it through the periplasm to the outer membrane. PulD is the first bacterial outer membrane protein with demonstrated ability to insert efficiently into the inner membrane.  相似文献   

13.
A method has been developed for the isolation of outer membranes from Acinetobacter sp. strain MJT/F5/199A. Washed cells were broken in a French press and, after deoxyribonuclease and ribonuclease treatment, removal of intact cells, and four washes in 20 mosmol phosphate buffer, pH 7.4, with centrifugation at 25,000 x g for 10 min, preparations of cell wall fragments from which almost all pieces of plasma membrane had been removed resulted. Treatment of the cell walls with lysozyme and further washing, in the presence of 20 mM MgCl(2), yielded preparations of outer membranes. Electron microscopy of freeze-etched preparations shows that a regular pattern of subunits is present on the outer surfaces of intact cells. After negative staining, these subunits are visible on isolated walls and outer membranes; they can be removed by brief treatment with papain. In section, the cell wall structure is that typical of gram-negative bacteria, but the subunits are not detectable on the surface of the outer membrane. The outer membrane retains the appearance of a "unit membrane" in the cell wall, isolated outer membrane, and papain-treated outer membrane fractions. Both cell walls and outer membranes contain a high percentage of protein (76 and 84%, respectively) and not more than 5% carbohydrate, of which glucose and galactose are constitutents. The outer membranes of this Acinetobacter thus differ in structure and composition from those of bacteria in the Enterobacteriaceae.  相似文献   

14.
The Gram-negative anaerobic bacterium B. fragilis is a member of the commensal flora of the human intestine, but is also frequently found in severe intra-abdominal infections. Several B. fragilis virulence factors have been implicated in the development of these infections. A B. fragilis protein of circa 60-kDa was identified as a putative plasminogen binding protein (Pbp). The corresponding gene was located, cloned, sequenced and the subcellular localization of the protein was investigated. Pbp was both determined in the outer membrane of B. fragilis and of E. coli that expressed the cloned protein. Protease accessibility studies showed that the protein is expressed at the cell surface. Importantly, we demonstrated that Pbp is sufficient and required for plasminogen binding to whole cells in both E. coli and B. fragilis. Pbp-like proteins were also detected in some other Bacteroides subspecies. The role of this potential B. fragilis virulence factor in pathogenicity is discussed.  相似文献   

15.
A number of strains ofThermus spp. changed morphology from rods of about 6 to 8 m long to multicellular filaments (unsheathed trichomes) up to many hundreds of micrometres long with the addition of glycine or certain D-amino acids to the growth medium. Associated with this change was the formation of braided trichomes and occasionally true knots. Filament formation was reversible by the removal of the causal agent, but only if growth was possible. Electron microscopy suggested that the wall structure was not changed, but only that cells did not separate due to the continuous nature of the outer membrane layer. The filaments were thus multicellular. The constituent cells were similar in length to the normal rod-shaped cells. Filament formation byThermus spp. may have applications in industrial scale culture of these extracellular enzymeproducing thermophilic bacteria.  相似文献   

16.
Osmotically stable spheroplasts were produced from Escherichia coli ML-35 and W7-M5 using either 1 min exposure to polymyxin B or 10 min exposure to Tris/EDTA, followed by 1 to 3 h incubation with lysozyme. Spheroplast membrane permeability studies were conducted using paired radioactive probes with E. coli ML-35. Experiments with 14C-sucrose-16 kD 3H-dextran indicated that the outer membrane had lost its barrier to 16 kD dextran. Parallel experiments with 81 kD 3H-dextran indicated that the outer membrane was impermeable to the larger dextran. EDTA treated cells also showed outer membrane permeability to 16 kD dextran. Cytoplasmic membrane integrity was confirmed using 14C-sucrose and 3H2O before and after exposure to polymyxin B and EDTA. Scanning electron microscopy showed that a rough surface on polymyxin B produced spheroplasts while Tris/EDTA spheroplasts showed the same smooth surface as control cells.  相似文献   

17.
Salmonella species translocate virulence effector proteins from the bacterial cytoplasm into mammalian host cells by means of a type III secretion apparatus, encoded by the pathogenicity island-1 (SPI-1). Little is known about the assembly and structure of this secretion apparatus, but the InvG protein is essential and could be an outer membrane secretion channel for the effector proteins. We observed that in recombinant Escherichia coli , the yield of InvG was enhanced by co-expression of InvH, and showed that mutation of invH decreased the level of InvG in wild-type Salmonella typhimurium . In E. coli , InvG alone was able to form an SDS-resistant multimer, but InvG localization to the outer membrane was dependent upon InvH, a lipoprotein itself located in the outer membrane, and no other SPI-1 specific protein. InvG targeted to the outer membrane by InvH became accessible to extracellular protease. InvG and InvH did not, however, appear to form a stable complex. Electron microscopy of InvG membrane protein purified from E. coli revealed that it forms an oligomeric ring-like structure with inner and outer diameters, 7 nm and 15 nm respectively.  相似文献   

18.
Using biotinylated phage (BIO-phages), we observed the infection of filamentous phages into Escherichia coli JM109 morphologically. BIO-phages and BIO-phage-derived proteins, mainly pVIII, were detected in E. coli by using the avidin-biotin-peroxidase complex method with electron microscopy. Infected cells revealed positive staining on the outer and inner membranes and in the periplasmic space. Some cells showed specific or predominant staining of the outer membrane, whereas others showed predominant staining of the inner membrane or equivalent staining of the outer and inner membranes. The periplasmic spaces in some infected cells were expanded and filled with reaction products. Some cells showed wavy lines of positive staining in the periplasmic space. BIO-phages were detected as thick filaments or clusters covered with reaction products. The ends of the infecting phages were located on the surface of cells, in the periplasmic space, or on the inner membrane. These findings suggest that phage major coat proteins are integrated into the outer membrane and that phages cause periplasmic expansion during infection.  相似文献   

19.
Amikacin disrupts the cell envelope of Pseudomonas aeruginosa ATCC 9027   总被引:8,自引:0,他引:8  
Amikacin, an aminoglycoside known to inhibit protein synthesis, was found to perturb the outer membrane of a sensitive Pseudomonas aeruginosa strain (ATCC 9027). This perturbation was monitored using electron microscopy and biochemical analyses. Following exposure to 20 micrograms amikacin/mL for 15 min, the outer membrane of exponentially growing cells lost 15% of its protein, 18% of its lipopolysaccharide, and 18% of its phosphate. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that the whole spectrum of outer membrane protein and lipopolysaccharide was affected. Similarly, atomic absorption spectrophotometry revealed that magnesium and calcium were also lost. When cells were treated with amikacin, electron microscopy of negative stains showed a substantial increase in outer membrane blebbing. Freeze fractures revealed changes in membrane fracture pattern and particle distribution, and thin sections revealed a sequential disruption of the cell envelope beginning at the outer membrane and ending at the plasma membrane. This study supports the proposal that aminoglycoside antibiotics cross the outer membrane of Pseudomonas aeruginosa by displacing metal cations necessary to stabilize the organic constituents of the membrane. Their removal results in loss of the outer membrane and the formation of transient small holes which permit the antibiotic access to the cytoplasmic membrane where it is transported into the cytoplasm.  相似文献   

20.
Starting with an Escherichia coli strain missing the outer membrane lipoprotein, multiple mutants were constructed than in addition to this defect miss the outer membrane proteins II, Ia and Ib, or Ia, Ib, and II. In contrast to all single mutants or strains missing the lipoprotein and polypeptides Ia and Ib, drastic influences on the integrity of the outer membrane and cell morphology were observed in mutants without lipoprotein and protein II. Such strains exhibited spherical morphology. They required increased concentrations of electrolytes for optimal growth, and Mg2+ or Ca2+ were the most efficient. These mutants were sensitive to hydrophobic antibiotics and detergents. Electron microscopy revealed abundant blebbing of the outer membrane, and it could clearly be seen that the murein layer was no longer associated with the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号