首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth rate of malignant F9 embryonal carcinoma cells slows considerably following all-trans-retinoic acid-induced differentiation into benign parietal endoderm. To determine the mechanism of this process, we examined the expression of cyclins D1, D2, and D3 and the activity of their associated kinases. Cyclin D1 and D3 mRNA levels decreased during complete differentiation induced by all-trans-retinoic acid and dibutyryl cAMP, while the levels of cyclin D2 and the cyclin-dependent kinase (Cdk) inhibitor p27 mRNAs increased. Ultimately, terminally differentiated cells possessed 50% of the Cdk4-associated kinase activity observed in undifferentiated cells. Since numerous genes are differentially regulated during parietal endoderm differentiation, it is difficult to determine whether retinoic acid affects cell cycle gene expression directly or if these changes are caused by differentiation. We found that the retinoid X receptor (RXR)-selective agonists LG100153 and LG100268 significantly inhibited F9 cell growth without causing overt terminal differentiation as assessed by anchorage-independent growth and differentiation-associated gene expression. As seen in cells induced to differentiate by the RAR agonist all-trans-retinoic acid, RXR activation led to an increase in the number of cells in G1 phase. RXR agonists also sharply induced the levels of the Cdk regulatory subunits, cyclin D2 and D3. However, Cdk4-dependent kinase activity was reduced by RXR-selective retinoid treatment. These observations suggest that some retinoids can directly inhibit proliferation and regulate Cdk4-dependent kinase activity without inducing terminal differentiation.  相似文献   

2.
Apoptosis plays an important role during embryonic development. Apoptotic cell death is executed by caspases and can be regulated by the Bcl-2 family of genes. Ribonuclease protection assay was used to investigate the expression of selected apoptosis-related genes of the Bcl-2 family, pro-apoptotic Bax, Bad and anti-apoptotic Bcl-2, during differentiation of murine embryonic stem cells (ES) mediated by all-trans-retinoic acid. The mRNA expression of caspase 3, caspase 6 and certain pro-inflammatory cytokines was also investigated simultaneously. ES cells exposed to 1 microM all-trans-retinoic acid on day 8, 9 and 10 of differentiation revealed increased expression of Bax and Bad compared to the vehicle-treated cells. No effect on Bcl-2 mRNA was noted after all-trans-retinoic acid treatment. Increased mRNA expression of caspase 3 and caspase 6 in all-trans-retinoic acid-exposed ES cells suggested that caspases play an important role in retinoic acid-mediated apoptosis during ES differentiation. Increase in the expression of TNF alpha and macrophage migration inhibitory factor (MIF) was noted in retinoic acid-treated cells on day 14. Significant increase observed in interferon gamma inducing factor (IGIF/IL-18) mRNA expression in all-trans-retinoic acid-treated cells on day 14 and 17 did not translate to increased INF gamma expression. No change in the expression of other pro-inflammatory cytokines was noted with all-trans-retinoic acid treatment. The function of TNF alpha, IGIF/IL-18 and MIF in all-trans-retinoic acid-treated cells during ES differentiation and apoptosis is still speculatory. Results suggested that RA-mediated apoptosis during neural differentiation of ES cells involves up-regulation of caspase 3, caspase 6, Bad, and Bax.  相似文献   

3.
4.
5.
The glycoproteins synthesized by human keratinocytes cultured on 3T3 feeder layers were studied by metabolic labelling. Keratinocytes freed of feeder cells synthesized a complex pattern of cellular and extracellular glycoproteins that was distinct from that of 3T3 cells, dermal fibroblasts and epidermal melanocytes. The effect of low concentrations of all-trans-retinoic acid and arotinoid ethyl ester on glycoprotein synthesis was examined in keratinocyte cultures depleted of vitamin A. Treatment with either retinoid resulted in a 2-3-fold increase in the amount of D-[3H]glucosamine-labelled material in the culture medium. Gel electrophoresis revealed increased incorporation of D-[3H]glucosamine into extracellular glycoproteins of Mr 245,000, 170,000, 140,000, 130,000, 120,000 and 105,000 as well as into glycosaminoglycans in retinoid-treated cultures. The labelling of extracellular glycoproteins with L-[3H]leucine and L-[35S]methionine was also increased by retinoids suggesting increased synthesis of these components rather than an effect on their glycosylation. The Mr 245 000 glycoprotein was identified as keratinocyte-derived fibronectin by immunoblotting, immunoprecipitation and specific binding to gelatin. The results show that retinoids increase the synthesis of glycoprotein as well as glycosaminoglycan components of the extracellular matrix in human keratinocyte cultures. It is suggested that retinoids select for a population of cells that synthesize relatively large amounts of glycosaminoglycan, fibronectin and other as yet unidentified extracellular glycoproteins.  相似文献   

6.
The teratogenicity of retinoids containing either tetramethylated tetralin (Ro 13-6307 or Ro 13-2389) or tetramethylated indane (Ro 13-4306) ring system substitutions was compared to the teratogenic potency of all-trans-retinoic acid. Single oral doses, administered to Syrian Golden hamsters at 10:00 A.M. on day 8 of gestation, induced a syndrome of malformations identical to that induced by treatment with all-trans-retinoic acid. These retinoids failed to induce signs of maternal hypervitaminosis A at doses associated with a significant teratogenic response. The tetramethylated tetralin retinoids and indane retinoid were 18 and 2.4 times as embryotoxic on a molar basis, respectively, as all-trans-retinoic acid. Introduction of a supplementary ring in the side-chain restricted polyene chain flexibility and maintained the hydrophobic plane of the chain. The present results are consistent with previous studies showing that the presence of or biotransformation to a free acid congener was necessary for retinoid teratogenic activity in hamsters and that increasing conformational restriction of acidic retinoids increased teratogenic potency.  相似文献   

7.
8.
Abstract: Adenylate kinase (AK), which catalyzes the equilibrium reaction among AMP, ADP, and ATP, is considered to participate in the homeostasis of energy metabolism in cells. Among three vertebrate isozymes, AK isozyme 1 (AK1) is present prominently in the cytosol of skeletal muscle and brain. When mouse embryonal carcinoma P19 cells were differentiated by retinoic acid into neural cells, the amount of AK1 protein and enzyme activity increased about fivefold concomitantly with neurofilament (NF). Double-immunofluorescence staining showed that both AK1 and NF were located in neuronal processes as well as the perinuclear regions in neuron-like cells, but not in glia-like cells. The amount of brain-type creatine kinase increased only twofold during P19 differentiation. The AK isozyme 2, which was not detected in adult mouse brain, was found in P19 cells and did not increase during the differentiation. Mitochondrial AK isozyme 3, which uses GTP instead of ATP as a phosphate donor, was increased significantly. Immunohistochemical analysis with the primary cultured cells from rat cerebral cortex showed similar cellular localization of AK1 to those observed with differentiated P19 cells. These results suggest an important role of this enzyme in neuronal functions and in neuronal differentiation.  相似文献   

9.
10.
11.
12.
13.
The retinoids, the natural or synthetic derivatives of Vitamin A (retinol), are essential for the normal development of prostate and have been shown to modulate prostate cancer progression in vivo as well as to modulate growth of several prostate cancer cell lines. 9-cis-retinoic acid and all-trans-retinoic acid are the two most important metabolites of retinol. Gap junctions, formed of proteins called connexins, are ensembles of intercellular channels that permit the exchange of small growth regulatory molecules between adjoining cells. Gap junctional communication is instrumental in the control of cell growth. We examined the effect of 9-cis-retinoic acid and all-trans retinoic acid on the formation and degradation of gap junctions as well as on junctional communication in an androgen-responsive prostate cancer cell line, LNCaP, which expressed retrovirally introduced connexin32, a connexin expressed by the luminal cells and well-differentiated cells of prostate tumors. Our results showed that 9-cis-retinoic acid and all-trans retinoic acid enhanced the assembly of connexin32 into gap junctions. Our results further showed that 9-cis-retinoic acid and all-trans-retinoic acid prevented androgen-regulated degradation of gap junctions, post-translationally, independent of androgen receptor mediated signaling. Finally, our findings showed that formation of gap junctions sensitized connexin32-expressing LNCaP cells to the growth modifying effects of 9-cis-retinoic acid, all-trans-retinoic acid and androgens. Thus, the effects of retinoids and androgens on growth and the formation and degradation of gap junctions and their function might be related to their ability to modulate prostate growth and cancer.  相似文献   

14.
15.
16.
17.
18.
19.
To investigate further the molecular mechanisms of progestin regulation of human breast cancer cell growth, we studied the effect of progestins on expression of the protooncogene c-jun and other members of the jun family, jun-B and jun-D, in T-47D human breast cancer cells. The progestin medroxyprogesterone acetate (MPA) increased c-jun mRNA levels in a time- and dose-dependent fashion. Maximal effects were seen after 3 h of treatment with 10-100 nM MPA. Under these conditions, the c-jun mRNA was increased 5.4-fold above the control level. Although the c-jun mRNA level was increased by cycloheximide alone, a further 2.4-fold increase was seen when the cells were treated with MPA in the presence of cycloheximide. The p39 c-jun protein was also increased 3.8-fold by this treatment. Maximum levels of p39 c-jun protein were achieved 9 h after treatment, and this level was maintained for at least 24 h. Dexamethasone and dihydrotestosterone did not increase the p39 c-jun protein level under these conditions. However, MPA treatment of T-47D cells resulted in a 55% decrease in overall AP-1 activity, as measured by transient transfection of an AP-1-regulated chloramphenicol acetyltransferase reporter gene. These effects were all reversible by cotreatment with a 10-fold higher concentration of the antiprogestin RU 486. MPA decreased jun-B mRNA levels 50% 1 h after treatment in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号