首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, structural and functional responses of benthic macroinvertebrates to mitigation measures (carried out in the dammed and polluted Duraton River, Central Spain, during the 1990s and 2000s) were examined by comparing physicochemical and biological data from the summer of 1987 with data from the summer of 2014. Mitigation measures resulted in significant increases in dissolved oxygen concentrations, as well as in significant reductions of fluoride (F) pollution and short-term flow fluctuations. The macrobenthic community responded positively to improvements in river environmental conditions, exhibiting significant increases in abundance (total density, total biomass and EPT density) and diversity (total family richness and EPT richness) at impacted sampling sites. Furthermore, the presence of relatively sensitive benthic macroinvertebrates after mitigation measures (as indicated by increased values of BMWQ biotic indices) also was the main cause for observed reductions in the environmental impact caused by disturbance points (as indicated by decreased values of the EI index), and for the observed recovering of the trophic structure of the macrobenthic community, with macroinvertebrate scrapers as the functional feeding group most favored. These macroinvertebrate responses to mitigation measures were more marked at sampling sites that initially were more impacted (i.e., nearest to disturbance points), and less apparent at the sampling site that initially was less impacted (i.e., farthest to disturbance points). Within the hydropsychid assemblage, improvements in river environmental conditions clearly favored the presence of Hydropsyche pellucidula and Cheumatopsyche lepida at the expense of the other hydropsychid species. In spite of all monitored environmental improvements and macroinvertebrate positive responses, the need for additional mitigation measures was evident, particularly to reduce high turbidity levels and sedimentation of fine inorganic matter negatively affecting benthic macroinvertebrates downstream from the industrial effluent. Overall, it is concluded that the multimetric approach is an effective technique to assess macroinvertebrate responses to mitigation measures in river ecosystems.  相似文献   

2.
Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio rivers, Midwest USA. In 2004 and 2005, benthic macroinvertebrates, water chemistry, and habitat data were collected from randomly selected sites on each of the St. Croix, Wisconsin, Minnesota, Scioto, Wabash, and Illinois rivers. We first identified the human disturbance gradient using principal components analysis (PCA) of abiotic data. From the PCA, least disturbed sites showed strong separation from stressed sites along a gradient contrasting high water clarity, canopy cover, habitat scores, and plant-based substrates at one end and higher conductivity and nutrient concentrations at the other. Evaluation of 97 benthic metrics identified those with good range, responsiveness, and relative scope of impairment, as well as redundancies with other metrics. The final index was composed of Diptera taxa richness, EPT taxa richness, Coleoptera taxa richness, percent oligochaete and leech taxa, percent collector-filterer individuals, predator taxa richness, percent burrower taxa, tolerant taxa richness, and percent facultative individuals. Each of the selected metrics was scored using upper and lower thresholds based on all sites, and averaging across the nine metric scores, we obtained the Non-wadeable Macroinvertebrate Assemblage Condition Index (NMACI). The NMACI showed a strong response to disturbance using a validation data set and was highly correlated with non-metric multidimensional scaling (NMDS) ordination axes of benthic taxa. The cumulative distribution function of index scores for each river showed qualitative differences in condition among rivers. NMACI scores were highest for the federally protected St. Croix River and lowest for the Illinois River. Other rivers were intermediate and generally reflected the mixture of land use types within individual basins. Use of regional reference sites, though setting a high level of expectation, provides a valuable frame of reference for the potential of large river benthic communities that will aid management and restoration efforts.  相似文献   

3.
The main objective of this study was to develop a highland Andean streams ecological assessment tool for managers to determine the biological quality in this broad area of South America. Sampling was conducted during the dry season at 123 sites in eight watersheds of high Andean streams from south of Peru to North of Ecuador. The sites were at elevations above 2000 m a.s.l., and ranged in anthropogenic disturbance from none or little (reference) to highly disturbed. Using the physicochemical, hydromorphological and aquatic macroinvertebrate assemblage attributes of the reference sites, two different elevation bioregions were identified (from 2000 to 3500 m a.s.l. and those sites at altitudes higher than 3500 m a.s.l.). Differences between these two bioregions were related to the change in altitude of the most relevant environmental factors, i.e., temperature, oxygen content of the water and the extent of forested vegetation in the basin and in the riparian zone. These features were paramount to having different macroinvertebrate assemblages as demonstrated by an MDS analysis of our data. Two versions of the multi-metric index IMEERA were developed (the acronym comes from the Spanish name ‘Índice Multimétrico del Estado Ecológico para Ríos Altoandinos’) that corresponded to the two bioregions. In the lower altitude bioregion (Bosque river type, IMEERA-B index), the pressure gradient was driven by the organic pollution and the hydromorphological degradation. While in the higher elevation bioregion (Páramo and Puna river types; IMEERA-P river type), the gradient was driven by the organic pollution and the habitat heterogeneity. The IMEERA B index includes six macroinvertebrate metrics using its richness, habit characteristics and tolerance/intolerance to disturbances (EPT taxa, % clingers, % climbers, intolerant taxa, ABI and % tolerant taxa). The IMEERA P index was calculated using four metrics corresponding to macroinvertebrate richness and its tolerance/intolerance to disturbances (total taxa, intolerant taxa, ABI and % tolerant taxa). The index was validated with a set of independent data from the headwaters of Guayllabamba River in Ecuador.  相似文献   

4.
The aim of this study was to evaluate the influence of environmental factors on the distribution of macroinvertebrate taxa in different sized lowland Lithuanian rivers. A secondary aim was to assess ecological river quality and to determine the most suitable biotic index. A final aim was to determine the most appropriate macroinvertebrate families for river quality assessment in Lithuania. Species composition and quantitative characteristics of benthic macroinvertebrate communities have been investigated using standard kick-sampling method by a standard hand net in 24 different river sites in spring. Physical and chemical environmental parameters were measured in the same study site as the macroinvertebrate sampling. A total of 186 taxa representing 66 families or higher taxonomic ranks of benthic macroinvertebrates have been identified. Water temperature and current velocity influenced the highest number of ivestigated families. Seven of the most tolerant and eleven of the most sensitive macroinvertebrate taxa for hydrochemical parameters related with organic pollution were determined. The DSFI method was founded to be the best index for assessment of ecological status for Lithuanian rivers until more accurate estimation method will be created.  相似文献   

5.
Most studies dealing with the use of ecological indicators and other applied ecological research rely on some definition or concept of what constitutes least-, intermediate- and most-disturbed condition. Currently, most rigorous methodologies designed to define those conditions are suited to large spatial extents (nations, ecoregions) and many sites (hundreds to thousands). The objective of this study was to describe a methodology to quantitatively define a disturbance gradient for 40 sites in each of two small southeastern Brazil river basins. The assessment of anthropogenic disturbance experienced by each site was based solely on measurements strictly related to the intensity and extent of anthropogenic pressures. We calculated two indices: one concerned site-scale pressures and the other catchment-scale pressures. We combined those two indices into a single integrated disturbance index (IDI) because disturbances operating at both scales affect stream biota. The local- and catchment-scale disturbance indices were weakly correlated in the two basins (r = 0.21 and 0.35) and both significantly (p < 0.05) reduced site EPT (insect orders Ephemeroptera, Plecoptera, Trichoptera) richness. The IDI also performed well in explaining EPT richness in the basin that presented the stronger disturbance gradient (R2 = 0.39, p < 0.001). Natural habitat variability was assessed as a second source of variation in EPT richness. Stream size and microhabitats were the key habitat characteristics not related to disturbances that enhanced the explanation of EPT richness over that attributed to the IDI. In both basins the IDI plus habitat metrics together explained around 50% of EPT richness variation. In the basin with the weaker disturbance gradient, natural habitat explained more variation in EPT richness than did the IDI, a result that has implications for biomonitoring studies. We conclude that quantitatively defined disturbance gradients offer a reliable and comprehensive characterization of anthropogenic pressure that integrates data from different spatial scales.  相似文献   

6.
Flow disturbances and conversions of land‐use types are two major factors that influence river ecosystems. However, few studies have considered their interactions and separated their individual effects on aquatic organisms. Using monthly monitoring data from two streams with different land‐use types (i.e. forest and agriculture) in the subtropical Central China over three years, we accurately predicted the changes of macroinvertebrate communities under flood disturbances and land‐use type conversions. The dominant taxa and main community metrics significantly declined following flash floods. Several mayflies and chironomid had rapid rates of recovery, which could reach high abundance in three months after floods. And most of the community metrics recovered more rapidly in the forested river than that in the agricultural river. Stepwise multiple regression (SMR) models were used to investigate the relationships between biotic metrics and hydrological and temporal variables. For example, SMR revealed that floods reduced the stability of benthic communities, and the length of low flow period was of considerable importance to the recovery of the fauna. Two‐way ANOVA indicated that intra‐annual fluctuation had more (e.g. the total abundance and wet biomass), equal (e.g. total richness, EPT richness, percent EPT abundance, and Margalef index), or less (e.g. tolerant value) influence on macroinvertebrate communities than land‐use types. Consequently, the effects of floods on macroinvertebrates should be taken into account when macroinvertebrates are used as indicators for assessing river ecosystem. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The successful use of macroinvertebrates as indicators of stream condition in bioassessments has led to heightened interest throughout the scientific community in the prediction of stream condition. For example, predictive models are increasingly being developed that use measures of watershed disturbance, including urban and agricultural land-use, as explanatory variables to predict various metrics of biological condition such as richness, tolerance, percent predators, index of biotic integrity, functional species traits, or even ordination axes scores. Our primary intent was to determine if effective models could be developed using watershed characteristics of disturbance to predict macroinvertebrate metrics among disparate and widely separated ecoregions. We aggregated macroinvertebrate data from universities and state and federal agencies in order to assemble stream data sets of high enough density appropriate for modeling in three distinct ecoregions in Oregon and California. Extensive review and quality assurance of macroinvertebrate sampling protocols, laboratory subsample counts and taxonomic resolution was completed to assure data comparability. We used widely available digital coverages of land-use and land-cover data summarized at the watershed and riparian scale as explanatory variables to predict macroinvertebrate metrics commonly used by state resource managers to assess stream condition. The “best” multiple linear regression models from each region required only two or three explanatory variables to model macroinvertebrate metrics and explained 41–74% of the variation. In each region the best model contained some measure of urban and/or agricultural land-use, yet often the model was improved by including a natural explanatory variable such as mean annual precipitation or mean watershed slope. Two macroinvertebrate metrics were common among all three regions, the metric that summarizes the richness of tolerant macroinvertebrates (RICHTOL) and some form of EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness. Best models were developed for the same two invertebrate metrics even though the geographic regions reflect distinct differences in precipitation, geology, elevation, slope, population density, and land-use. With further development, models like these can be used to elicit better causal linkages to stream biological attributes or condition and can be used by researchers or managers to predict biological indicators of stream condition at unsampled sites.  相似文献   

8.
Longitudinal distribution and abundance of macroinvertebrate communities were examined in relation to hydrochemical variables along the Chubut River in the Patagonian Precordillera and Plateau, Argentina. The Chubut River (>1000 km) is the largest river in the area and its basin is subject to multiple uses: agriculture, cattle raising, urbanization and the hydrological regime of the lower section is modified by a reservoir. Quantitative benthic samples were collected at 13 sites in the higher, middle and lower sections of the river basin. Sites were visited four times during 2004 and physicochemical parameters, chlorophyll a and particulate organic matter (POM) were assessed. Ninety-five taxa were collected in the study, with total species richness per site ranging from 5 to 51, and benthos density averaging 299–5024 ind m−2. Altitude and turbidity were implicated as important factors determining macroinvertebrate assemblages along the river system, and an eutrophication gradient was documented in the regulated/urbanized section of the main river. High turbidity (TSS) and sedimentation limited algal productivity in the middle basin. Below the dam, TSS, total phosphorus (TP) and POM decreased, whereas soluble reactive phosphorus (SRP) and chlorophyll a increased. Macroinvertebrate density increased three fold in this area possibly due to habitat improvement and enhanced trophic resources. Mean species richness did not change below the impoundment; however the community was dominated by gastropods, chironomids and flatworms. The Chubut River is complex and its biotic community reflects the landscape attributes. While benthic composition and density was governed by turbidity and flood disturbance in some river segments, a greater environmental heterogeneity resulted in an unexpected high number of species at the main channel upper basin.  相似文献   

9.
Data on macroinvertebrates of selected reference sites were compiled from a long-term monitoring programme carried out in the Mediterranean Catalan Basins (NE Spain) that permitted analysis for nine years, from 1996 to 2004, using a homogeneous data collection procedure. This study aims to analyse the differences in composition and structure of macroinvertebrate communities at family level in five Mediterranean river types, and the values of biological quality metrics (IBMWP and IASPT indices, taxon richness and EPT) in reference conditions. Also differences between seasons (spring vs. summer) and between dry and wet periods were analysed. The dry and wet periods were determined using the Standardised Precipitation Index (SPI). A total of 29 reference sites were selected out of 184 sampling sites analysed, and 171 reference samples were available (from 1996 to 2004), of which 88 were sampled in dry periods, whereas 83 correspond to wet periods. Differences on community composition at family level were appreciated, clustering the rivers in three different groups: (1) rivers with a continuous flow regime located in siliceous zones; (2) rivers with a continuous flow regime located in calcareous zones; and (3) temporary rivers regardless of geology. Moreover, our results explain that the characteristics of hydrological periods (dry and wet) characterize the differences between communities better than just the season. The analysis of four biological quality metrics reveals clear differences between values obtained from dry and wet periods concerning taxon richness, EPT values and IBMWP biological indices, whereas the IASPT index does not show significant differences. The median taxonomic richness in wet periods is 32 macroinvertebrate families per sample while in dry periods this value falls to 22. Reference values of IBMWP index, the total number of taxa, and EPT metric are different between dry and wet periods in spring samples, while these differences are not relevant for IASPT index except for temporary streams. Hydrological specific conditions should additionally be considered in order to better calculate biological reference conditions, and to properly apply biological quality metrics used to establish the ecological status in Mediterranean rivers, especially in temporary ones. The use of the dry–wet period classification according to the climate characteristic results is a more accurate application of the Water Framework Directive in Mediterranean rivers. Implications of future climate change should be also considered from our results.  相似文献   

10.
The impacts of watershed urbanization on streams have been studied worldwide, but are rare in China. We examined relationships among watershed land uses and stream physicochemical and biological attributes, impacts of urbanization on overall stream conditions, and the response pattern of macroinvertebrate assemblage metrics to the percent of impervious area (PIA) of watersheds in the middle section of the Qiantang River, Zhejiang Province, China. Environmental variables and benthic macroinvertebrates of 60 stream sites with varied levels of watershed urban land use were sampled in April, 2010. Spearman correlation analysis showed watershed urbanization levels significantly correlated with increased stream depth, width, and values of conductivity, total nitrogen, ammonia, phosphate, calcium, magnesium, and chemical oxygen demand for the study streams. There was significant difference in total taxa richness, Empheroptera, Plecoptera, and Trichoptera (EPT) taxa richness, and Diptera taxa richness, percentages of individual abundances of EPT, Chironomidae, shredders, filterers, and scrapers, and Shannon–Wiener diversity index between reference streams and urban impacted streams. In contrast, percentages of individual abundances for collectors, oligochaeta, and tolerant taxa, and biotic index were significantly higher in urban impacted than reference streams. All the above metrics were significantly correlated with PIA. The response patterns of total taxa richness, EPT taxa richness, and Shannon–Wiener diversity index followed a drastic decrease at thresholds of 3.6, 3.7, and 5.5% of PIA, respectively. Our findings indicate that stream benthic macroinvertebrate metrics are effective indicators of impacts of watershed urban development, and the PIA-imperviousness thresholds we identified could potentially be used for setting benchmarks for watershed development planning and for prioritizing high valued stream systems for protection and rehabilitation.  相似文献   

11.
The EPT index (Ephemeroptera, Plecoptera and Trichoptera) may be skewed by the wide tolerance to multiple stressors of the Baetid, Caenid and Hydropsychid families, which affects the performance of the EPT index as an indicator of multiple stressors in aquatic ecosystems. The effect of the BCH families on the EPT index was evaluated and alternatives were considered to improve its performance. The hypothesis that the removal of the BCH families improves sensitivity of the EPT index to human-induced stressors in streams and rivers was tested. Macroinvertebrates were collected in January–March 2009 at 22 sites in the Nyando and Nzoia Rivers, Lake Victoria basin, Kenya. Nine derivatives and modifications of the EPT index were tested for responses to a disturbance gradient, ranked into three condition categories (reference, intermediate and impaired). The sensitivity of the proportionate abundance derivative of the EPT index improved when the BCH families were removed, whereas that of the richness derivative improved marginally. Other modifications considered performed poorly when compared with the EPT-BCH metrics. Wide distribution of the BCH across all sites, irrespective of the level of disturbance, reduced the sensitivity of the EPT index in the studied streams. The removal of the BCH families enhanced the sensitivity of the index to multiple stressors in Afrotropical streams and rivers.  相似文献   

12.
Several nitrogen (N) field experiments were carried out in Nanjing and Anyang, China, to study the dynamic characteristics of biomass accumulation and N uptake, and to define the dilution curve for critical N concentration in cotton reproductive organ over the growth period. The results show that the total biomass and N accumulation were affected significantly by the rate of N application, exhibiting a sigmoid curve over time. The beginning time of fast N accumulation was 1–5 d earlier than that of biomass accumulation. The cotton lint yield was correlated with N concentration in the reproductive organ and fluctuated with varying N concentration, indicating the existence of luxurious N consumption in the cotton reproductive organ. The N concentration increased with increasing N application rates, and decreased gradually during the growth period. The relationship between biomass and N concentration can be described with a power equation. The patterns of the N concentration dilution model were consistent at both experimental sites, but the model parameter values of a differed. The results presented in this paper indicate that a critical N concentration dilution curve for cotton reproductive organ is independent of ecological region and can be described with a power equation.  相似文献   

13.
Macroinvertebrates have a successful history of use as indicators of human impact in lotic environments. More recently, macroinvertebrate indices have been recommended for use in certain wetland types. Yet some authors do not recommend macroinvertebrates indices of wetland condition in areas with pronounced natural environmental heterogeneity. Our study provides a preliminary assessment of the feasibility of using macroinvertebrates for bioassessment of temporary isolated depression wetlands in the south-western Cape region of South Africa. We expected natural environmental heterogeneity among wetlands to exert a stronger influence on macroinvertebrates than human disturbance factors. Partitioning of the variation in macroinvertebrate assemblage composition that could be attributed to human disturbance factors (within and adjacent to wetlands), environmental variables and spatio-temporal factors indicated that environmental and spatio-temporal factors independent of human disturbances largely determined assemblage composition, whilst human disturbance played a relatively minor role. Linear regressions of taxon richness/diversity measures, individual families and a collation of metrics against measures of habitat transformation around wetlands and scores from a rapid assessment index of human disturbance revealed poor relationships. The univariate and multivariate patterns observed in this study do not lend themselves to the creation of a macroinvertebrate index of human disturbance for temporary wetlands in the region.  相似文献   

14.
15.
引水型电站对河流底栖动物群落结构的影响   总被引:3,自引:1,他引:3  
于2005年10月对香溪河干流5个小水电站对河流底栖动物的影响进行调查研究,按影响情况,各电站设5个采样点.应用底栖动物物种组成、现存量、优势类群、功能摄食类群等参数,衡量小水电站对河流底栖动物群落结构的影响.在研究区域共采集到底栖动物4656条,平均密度为658ind./m2,蜉蝣目的四节蜉属(Baetis spp.)是该区域的优势类群.研究结果表明:电站的修建对河流水化学指标没有显著影响,但河流生境的物理因子(如流速和水深)都发生了较大的改变;对河流底栖动物的各方面均有一定的影响,特别是密度在5个样点间差异显著,而功能摄食类群中滤食者和捕食者的百分含量也有明显差异.另外,各项指标在5个样点间均有一致的变动趋势.相似性分析表明,坝下3号样点的群落组成差异最大,这意味着完全阻隔的坝不利于河流生物多样性的保护.  相似文献   

16.
大型底栖动物是河流生态系统较好的指示类群,越来越广泛地应用于河流生态状况评价.识别大型底栖动物空间分布的影响因素可以分为宏观尺度因子、中观尺度因子和微观尺度因子.前人的研究较多集中于中观尺度.本研究基于10 m河段微生境因子与大型底栖动物调查,采用地统计学方法,在微观尺度上分析了大型底栖动物空间分布特征及其与微生境的关系.结果表明:不同生境类型中底栖动物指标存在差异性,激流、深潭和急流的Shannon指数平均值分别为2、1.9、1.78;大型底栖动物密度、生物量、丰富度指数及Shannon指数具有空间自相关性,存在一定的扩散效应;微生境因子与大型底栖动物指标及物种的空间关系存在差异性,其中,水深和流速与大型底栖动物关系的拟合度较弱,底质组成与大型底栖动物的拟合关系相对较好,底栖动物密度与粒径<4 mm底质体积百分比呈现正空间自相关,生物量、丰富度指数、Shannon指数与粒径>32 mm底质体积百分比呈现正空间自相关.本研究结果可为底栖动物扩散机制研究、调查样方设置、物理生境修复等提供参考.  相似文献   

17.
With increasing human population and urbanization, tourism in natural reserves and other protected lands is growing. It is critical to monitor and assess the impacts of tourism on ecosystem health. However, there is a general lack of information on biological communities in natural reserves of developing countries and of tools for assessing human impacts. In the present study, we investigated macroinvertebrate assemblages in nine lakes in Jiuzhaigou Natural Reserve of China. Both benthic (20 dips of D-net) and light-trap samples (2 h) were collected at each lake and all benthic specimens and adults of Ephemeroptera, Plecoptera, and Trichoptera (EPT) were identified and counted. Water temperature and water quality variables were measured on site or in the Lab. Seventy taxa were recorded and dominated by dipterans and caddisflies. Light traps contributed 47% of taxa richness and 66% of EPT richness at the lakes. Detrended Correspondence Analysis showed that water temperature and tourism index were strongly associated with the changes of assemblage composition. Taxa richness and EPT richness calculated for the composite samples (benthic + light trap) were well fit with Poisson generalized linear model (adjusted R2 = 0.83 and 0.85, respectively), generally decreasing with increasing elevation, tourism index, and total-N. Tourism index was ranked as the top predictor for EPT richness based on multiple model weights, and elevation for taxa richness. In comparison, when based on benthic samples, neither of the metrics could be fitted with the seven environmental variables selected. These findings highlight the benefit of combined use of the sampling methods for lake monitoring and offered an analytical guide to developing biological indicators of lake ecosystem health in protected areas.  相似文献   

18.
城市溪流中径流式低坝对底栖动物群落结构的影响   总被引:2,自引:0,他引:2  
调查了浙江省安吉县内具径流式低坝的城市溪流(6个样点)和参照溪流(3个样点)的底栖动物群落,目的是了解城市溪流底栖动物群落结构退化规律和径流式低坝(2—3 m)对城市溪流底栖动物群落组成与结构的影响。结果表明,参照样点的底质组成以大石块(35.92%)和卵石(33.66%)为主,城市溪流以砾石为主(57.97%)。城市溪流水温和电导率显著高于参照溪流,TN和TP高于参照溪流。底栖动物总分类单元数和EPT分类单元数显著低于参照溪流。城市溪流河道内水坝上下游之间的流速(P=0.273)和宽深比(P=3.92)无显著差异。坝下游水体中的TP高于坝上游,电导率、溶解氧、pH值和水温在坝上下游之间几乎一致。除BI指数坝下游高于坝上游外,坝上下游间底栖动物总分类单元数、EPT分类单元数以及多样性指数、优势度和均匀度指数没有显著差异。但坝下游的耐污类群比例显著高于坝上游,敏感类群比例则显著低于坝上游。与坝上游相比,坝下游捕食者比例上升和集食者比例下降。NMDS结果进一步表明,城市溪流内水坝的建设导致坝上下游底栖动物群落物种组成明显改变。  相似文献   

19.
The North Fork Holston River (NFHR) was examined in fall 2005 to determine the potential impact of a brine discharge on benthic macroinvertebrates. Conductivity of the discharge ranged from 5900 to 10,930 μ S/cm with a highest measurement of 18,000 μ S/cm. During normal flow, conductivity dissipates rapidly downstream of the discharge; however, low-flow conditions in 2005 hindered dissipation. Benthic macroinvertebrate surveys determined statistically significant differences (p = .05) in all metrices between sites excluding taxa richness. Hydropsychid caddisflies were the predominant taxa at the first two sites below the brine discharge, accounting for 74.3 and 68.8% of the organisms collected. Therefore, Ephemeroptera-Plecoptera-Trichoptera (EPT) abundance minus Hydropsychidae [EPT-H] was the most predictive parameter measured. When hydropsychids were removed from statistical analyses, mean EPT abundance was highest at upstream reference sites 1 and 2 (256 and 297, respectively) and reduced at all downstream sites, ranging from 24 to 52 EPT organisms. Virginia Stream Condition Index (SCI) scores indicated impairment downstream of the discharge with scores of 46.9, 41.8, and 55.8, well below the impairment threshold of 61. These results suggest subchronic, intermittent toxicity occurs under low-flow and may contribute to altered benthic macroinvertebrate assemblages downstream of the brine discharge for approximately 26 miles.  相似文献   

20.
1. Despite non‐point‐source (NPS) pollution being perhaps the most ubiquitous stressor affecting urban streams, there is a lack of research assessing how urban NPS pollution affects stream ecosystems. We used a natural experimental design approach to assess how stream macroinvertebrate community structure, secondary production and trophic structure are influenced by urban NPS pollution in six streams. 2. Differences in macroinvertebrate community structure and secondary production among sites were highly correlated with stream‐water specific conductivity and dissolved inorganic phosphorus (DIP) concentrations. Macroinvertebrate richness, the Shannon diversity index and the Shannon evenness index were all negatively correlated with specific conductivity. These patterns were driven by differences in the richness and production of EPT and other intolerant taxa. Production of the five most productive taxa, tolerant taxa, non‐insect taxa and primary consumers were all positively correlated with stream‐water DIP. 3. Despite the positive correlation between primary consumer production and DIP, there was no correlation between macroinvertebrate predator production and either total or primary consumer macroinvertebrate production. This was observed because DIP was positively correlated with the production of non‐insect macroinvertebrate taxa assumed to be relatively unavailable for macroinvertebrate predator consumption. After removing production of these taxa, we observed a strong positive correlation between macroinvertebrate predator production and production of available prey. 4. Our results suggest that urban NPS pollution not only affects macroinvertebrate community structure, but also alters secondary production and trophic‐level dynamics. Differences in taxon production in our study indicate the potential for altered energy flow through stream food webs and potential effects on subsidies of aquatic insect prey to riparian food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号