首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
We have inserted a 1.7-kilobase pair Escherichia coli DNA fragment containing the 1-kilobase pair pyrC gene into the high copy number plasmid pKC16. Dihydroorotase expressed by the pyrC plasmid in E. coli constituted 6.3% of the soluble protein in frozen cell paste. Pure dihydroorotase derived from this frozen cell paste was compared with pure enzyme derived from an E. coli strain lacking the pyrC plasmid: tryptic peptide maps from the two dihydroorotase preparations, produced using reverse-phase high performance liquid chromatography, were indistinguishable. We conclude that the entire pyrC gene is present on the hybrid plasmid and that the dihydroorotase produced from this plasmid is identical to the wild type.  相似文献   

7.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

8.
Growth of Salmonella typhimurium pyrC or pyrD auxotrophs was severely inhibited in media that caused derepressed pyr gene expression. No such inhibition was observed with derepressed pyrA and pyrB auxotrophs. Growth inhibition was not due to the depletion of essential pyrimidine biosynthetic pathway intermediates or substrates. This result and the pattern of inhibition indicated that the accumulation of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate was toxic. This intermediate is synthesized by the sequential action of the first two enzymes of the pathway encoded by pyrA and pyrB and is a substrate for the pyrC gene product. It should accumulate to high levels in pyrC or pyrD mutants when expression of the pyrA and pyrB genes is elevated. The introduction of either a pyrA or pyrB mutation into a pyrC strain eliminated the observed growth inhibition. Additionally, a direct correlation was shown between the severity of growth inhibition of a pyrC auxotroph and the levels of the enzymes that synthesize carbamyl aspartate. The mechanism of carbamyl aspartate toxicity was not identified, but many potential sites of growth inhibition were excluded. Carbamyl aspartate toxicity was shown to be useful as a phenotypic trait for classifying pyrimidine auxotrophs and may also be useful for positive selection of pyrA or pyrB mutants. Finally, we discuss ways of overcoming growth inhibition of pyrC and pyrD mutants under derepressing conditions.  相似文献   

9.
fabD mutants of Escherichia coli contain a thermolabile malonyl-coenzyme A-acyl carrier protein transacylase which causes defective fatty acid synthesis and temperature-sensitive growth. By conjugation and P1 transduction the fabD locus has now been mapped at min 24, between pyrC and purB and close to cat. The order of sites is tentatively given as pyrC, cat, fabD, and purB, though the orientation of cat and fabD could be reversed. The possible relationship of fabD with another mutation lying in this region and also affecting acid synthesis is discussed. In the course of these studies we also confirmed the location of the fabA gene, determined that poaA lies between fabA and pyrC, and inadvertently found that the pyr mutation in strain AT3143 is probably pyrF and not pyrC.  相似文献   

10.
A 10.5-kilobase PstI endonuclease fragment encoding the entire Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster was cloned in Escherichia coli by transformation of a carB strain to uracil-independent growth. The cloned fragment also complemented E. coli pyrB, pyrC, pyrD, pyrE, and pyrF mutants. From the ability of subclones to complement E. coli pyr mutants, the gene order was deduced to be pyrBCADFE. The B. subtilis pyrB gene was shown to be expressed in E. coli, but synthesis of the enzyme was not repressible by the addition of uracil to the growth medium. The approximate molecular weights of the polypeptides encoded by B. subtilis pyrA, pyrB, pyrC, pyrD, pyrE, and pyrF were found to be 110,000, 36,000, 46,000, 34,000, 25,000, and 27,000, respectively.  相似文献   

11.
12.
13.
B. subtilis dihydroorotase is an important enzyme in de novo pyrimidine biosynthesis pathway and encoded by pyrC gene in pyr operon. pyrC was amplified from B. subtilis genomic DNA and cloned into expression vector pET21-DEST. Dihydroorotase was expressed soluble form in E. coli and purified. The protein was crystallized and diffracted to 2.2 A. The crystal belongs to P2(1)2(1)2(1) space-group, with unit cell parameters a = 48.864 A, b = 84.99 A, c = 203.05 A. There are 2 molecules per asymmetry unit.  相似文献   

14.
The promoter region of pyrC (dihydroorotase) gene of Escherichia coli was shown to have Fur protein binding properties by gel retardation assay. In vivo regulation of the pyrC expression was studied by measuring dihydroorotase activity and beta-galactosidase level in the fur+ and fur- genetic background. The expression of chromosomal dihydroorotase activity and beta-galactosidase activity of pyrC-lacZ fusion plasmid was repressed to about 30% and 17%, respectively in the fur+ strain compared to those in the fur- strain. Divalent ions such as Fe2+ and Zn2+ were not required for the repression. PyrC expression was also reduced to one half by 1 mM uracil. The effect of uracil was independent on the fur gene.  相似文献   

15.
16.
A morphological mutant of Escherichia coli K-12 that grows as round cells at 30, 37, or 42 C in a variety of complex and synthetic media has been isolated and characterized. The gene concerned, designated rodA, has been shown to be on the chromosome between the purE and pyrC loci and to be located at about minute 15. The rodA gene has been found to be co-transducible with the lip gene at a frequency of 95%. The rodA mutant showed an increased resistance to ultraviolet irradiation and a changed sensitivity to drugs. The resistance to ultraviolet irradiation and mitomycin C appears to be co-transducible with the rodA gene.  相似文献   

17.
sn-Glycerol-3-phosphate auxotrophs defective in phospholipid synthesis contain a Km-defective sn-glycerol-3-phosphate acyltransferase. Detailed genetic analysis revealed that two mutations were required for the auxotrophic phenotype. One mutation, in the previously described plsB locus (sn-glycerol-3-phosphate acyltransferase structural gene), mapped near min 92 on the Escherichia coli linkage map. Isolation of Tn10 insertions cotransducible with the auxotrophy in phage P1 crosses revealed that a second mutation was required with plsB26 to confer the sn-glycerol-3-phosphate auxotrophic phenotype. This second locus, plsX, mapped between pyrC and purB near min 24 on the E. coli linkage map. Tn10 insertions near plsX allowed detailed mapping of the genetic loci in this region. A clockwise gene order putA pyrC flbA flaL flaT plsX fabD ptsG thiK purB was inferred from results of two- and three-factor crosses. Strains harboring the four possible configurations of the mutant and wild-type plsB and plsX loci were constructed. Isogenic plsB+ plsX+, plsB+ plsX50, and plsB26 plsX+ strains grew equally well on glucose minimal medium without sn-glycerol-3-phosphate. In addition, plsX or plsX+ had no apparent effect on sn-glycerol-3-phosphate acyltransferase activity measured in membrane preparations. The molecular basis for the plsX requirement for conferral of sn-glycerol-3-phosphate auxotrophy in these strains remains to be established.  相似文献   

18.
19.
The nucleotide sequences of the genes encoding the enzyme aspartate transcarbamoylase (ATCase) from Pseudomonas putida have been determined. Our results confirm that the P. putida ATCase is a dodecameric protein composed of two types of polypeptide chains translated coordinately from overlapping genes. The P. putida ATCase does not possess dissociable regulatory and catalytic functions but instead apparently contains the regulatory nucleotide binding site within a unique N-terminal extension of the pyrB-encoded subunit. The first gene, pyrB, is 1,005 bp long and encodes the 334-amino-acid, 36.4-kDa catalytic subunit of the enzyme. The second gene is 1,275 bp long and encodes a 424-residue polypeptide which bears significant homology to dihydroorotase (DHOase) from other organisms. Despite the homology of the overlapping gene to known DHOases, this 44.2-kDa polypeptide is not considered to be the functional product of the pyrC gene in P. putida, as DHOase activity is distinct from the ATCase complex. Moreover, the 44.2-kDa polypeptide lacks specific histidyl residues thought to be critical for DHOase enzymatic function. The pyrC-like gene (henceforth designated pyrC') does not complement Escherichia coli pyrC auxotrophs, while the cloned pyrB gene does complement pyrB auxotrophs. The proposed function for the vestigial DHOase is to maintain ATCase activity by conserving the dodecameric assembly of the native enzyme. This unique assembly of six active pyrB polypeptides coupled with six inactive pyrC' polypeptides has not been seen previously for ATCase but is reminiscent of the fused trifunctional CAD enzyme of eukaryotes.  相似文献   

20.
Twenty three pyrimidine auxotrophs of Sinorhizobium meliloti Rmd201 were generated by random mutagenesis with transposon Tn5. On the basis of biochemical characters these auxotrophic mutants were classified into car, pyrC and pyrE/pyrF categories. All auxotrophs induced white nodules which were ineffective in nitrogen fixation. Light and electron microscopic studies revealed that the nodules induced by pyrC mutants were more developed than the nodules of car mutants. Similarly the nodules induced by pyrE/pyrF mutants had more advanced structural features than the nodules of pyrC mutants. The nodule development in case of pyrE/pyrF mutants was not to the extent observed in the parental strain. These results indicated that some of the intermediates and/or enzymes of pyrimidine biosynthetic pathway of S. meliloti play a key role in bacteroidal transformation and nodule development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号