首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Wen, B., Urano, M., Humm, J. L., Seshan, V. E., Li, G. C. and Ling, C. C. Comparison of Helzel and OxyLite Systems in the Measurements of Tumor Partial Oxygen Pressure (pO(2)). Radiat. Res. 168, 67-75 (2008). It has been demonstrated in both experimental and human malignancies that hypoxic tumor cells are linked with aggressive disease phenotype. One of the methods to identify these cells is by direct physical measurement of tumor pO(2). This study compared pO(2) values measured with two systems, the Helzel Hypoximeter (successor of the polarographic Eppendorf electrode) and the Oxford-Optronix OxyLite (fiber-optic probe), in R3327-AT and R3327-AT/tkeGFP tumors. Partial oxygen pressure was measured in individual tumors with either system or in the same tumor with both systems. The similarities and discrepancies in pO(2) measurements between the two systems were also investigated when tumor-bearing animals were breathing pure oxygen. Our data showed a considerable heterogeneity in pO(2) values in each tumor using both the Helzel and OxyLite systems. Similar results were obtained with both systems for the mean and median pO(2) values, and the distributions of pO(2) values within the interval 0 < pO(2) < 40 mmHg (the range important for defining tumor hypoxia) were found to be statistically equivalent. However, the frequencies of high pO(2) values (>40 mmHg) and zero values measured by the two systems were statistically significantly different.  相似文献   

2.
We recently described a novel approach to measuring regional tumor oxygen tension using (19)F pulse burst saturation recovery (PBSR) nuclear magnetic resonance (NMR) echo planar imaging (EPI) relaxometry of hexafluorobenzene. We now compare oxygen tension measurements in a group of size-matched R3327-AT1 Dunning prostate rat tumors made using this new method with those using a traditional polarographic method: the Eppendorf histograph. Similar oxygen tension distributions were found using the two methods, and both techniques showed that tumors with volume greater than 3.5 cm(3) were significantly (P < 0.0001) less well oxygenated than smaller tumors (volume less than 2 cm(3)). Using the (19)F EPI approach, we also examined the response to respiratory challenge. Increasing the concentration of inspired oxygen from 33% to 100% O(2) produced a significant increase (P < 0.0001) in tumor oxygenation for a group of small tumors. In contrast, no change was observed in the mean pO(2) for a group of large tumors. Consideration of individual tumor regions irrespective of tumor size showed a strong correlation between the maximum pO(2) observed when breathing 100% O(2) compared with mean baseline pO(2). These results further demonstrate the usefulness of (19)F EPI to assess changes in regional tumor oxygenation.  相似文献   

3.
Our previous studies have shown that oxygen inhalation significantly reduces tumor hypoxia in the moderately well-differentiated HI subline of the Dunning prostate R3327 rat carcinoma. To test our hypothesis that modifying hypoxia could improve the radiosensitivity of these tumors, we performed experimental radiotherapy to compare the tumor response to ionizing radiation alone or in combination with oxygen inhalation. Tumor pO(2) measurements were performed on size-selected tumors several hours before radiotherapy using (19)F nuclear magnetic resonance echo planar imaging relaxometry (FREDOM) of the reporter molecule hexafluorobenzene. In common with our previous findings, the larger tumors (>3.5 cm(3)) exhibited greater hypoxia than the smaller tumors (<2 cm(3); P < 0.001), and oxygen inhalation reduced the hypoxic fraction (<10 Torr): In the larger tumors, hypoxic fraction dropped significantly from a mean baseline value of 80% to 17% (P < 0.001). The effect of oxygen administered 30 min before and during irradiation on tumor response to a single 30-Gy dose of photons was evaluated by growth delay. For the smaller tumors, no difference in growth delay was found when treatment was given with or without oxygen breathing. By contrast, breathing oxygen before and during irradiation significantly enhanced the growth delay in the larger tumors (additional 51 days). The differential behavior may be attributed to the low baseline hypoxic fraction (<10 Torr) in small tumors (20%) as a target for oxygen inhalation. There was a strong correlation between the estimated initial pO(2) value and the radiation-induced tumor growth delay (R > 0.8). Our histological studies showed a good match between the perfused vessels marked by Hoechst 33342 dye and the total vessels immunostained by anti-CD31 and indicated extensive perfusion in this tumor line. In summary, the present results suggest that the ability to detect modulation of tumor pO(2), in particular, the residual hypoxic fraction, with respect to an intervention, could have prognostic value for predicting the efficacy of radiotherapy.  相似文献   

4.
Hypoxia is important in tumor biology and therapy. This study compared the novel luminescence fiber-optic OxyLite sensor with the Eppendorf polarographic electrode in measuring tumor oxygenation. Using the relatively well-oxygenated P22 tumor, oxygen measurements were made with both instruments in the same individual tumors. In 24 air-breathing animals, pooled electrode pO(2) readings lay in a range over twice that of sensor pO(2(5min)) values (-3.2 to 80 mm Hg and -0.1 to 34.8 mm Hg, respectively). However, there was no significant difference between the means +/- 2 SE of the median pO(2) values recorded by each instrument (11.0 +/- 3.3 and 8.1 +/- 1.9 mm Hg, for the electrode and sensor respectively, P = 0.07). In a group of 12 animals treated with carbon monoxide inhalation to induce tumor hypoxia, there was a small but significant difference between the means +/- 2 SE of the median pO(2) values reported by the electrode and sensor (1.7 +/- 0.9 and 2.9 +/- 0.7 mm Hg, respectively, P = 0.009). A variable degree of disparity was seen on comparison of pairs of median pO(2) values from individual tumors in both air-breathing and carbon monoxide-breathing animals. Despite the differences between the sets of readings made with each instrument from individual tumors, we have shown that the two instruments provide comparable assessments of tumor oxygenation in groups of tumors, over the range of median pO(2) values of 0.6 to 28.1 mm Hg.  相似文献   

5.
Pimonidazole binding was compared with oxygen electrode measurements and with measurements of the radiobiologically hypoxic fraction in C3H mammary tumors in which oxygenation was manipulated by means of subjecting tumor-bearing CDF1 mice to air breathing, carbogen breathing, oxygen breathing, hydralazine injection or tumor clamping. Hypoxia measured by pimonidazole binding could be correlated with both pO2 (r2 = 0.81) and radiobiologically hypoxic fraction (r2 = 0.85) in this system. The scope and limitation of pimonidazole as an immunohistochemical marker for tumor hypoxia is discussed.  相似文献   

6.
Methods currently available for the measurement of oxygen concentrations (oximetry) in viable tissues differ widely from each other in their methodological basis and applicability. The goal of this study was to compare two novel methods, particulate-based electron paramagnetic resonance (EPR) and OxyLite oximetry, in an experimental tumor model. EPR oximetry uses implantable paramagnetic particulates, whereas OxyLite uses fluorescent probes affixed on a fiber-optic cable. C3H mice were transplanted with radiation-induced fibrosarcoma (RIF-1) tumors in their hind limbs. Lithium phthalocyanine (LiPc) microcrystals were used as EPR probes. The pO(2) measurements were taken from random locations at a depth of approximately 3 mm within the tumor either immediately or 48 h after implantation of LiPc. Both methods revealed significant hypoxia in the tumor. However, there were striking differences between the EPR and OxyLite readings. The differences were attributed to the volume of tissue under examination and the effect of needle invasion at the site of measurement. This study recognizes the unique benefits of EPR oximetry in terms of robustness, repeatability and minimal invasiveness.  相似文献   

7.
Several studies have demonstrated that untreated tumors may show significant fluctuations in tissue oxygen tension (pO(2)). Radiation treatment may induce changes in the tumor microenvironment that alter the pO(2) fluctuation pattern. The purpose of the present study was to investigate whether pO(2) fluctuations may also occur in irradiated tumors. A-07 human melanoma xenografts were irradiated with single doses of 0, 5 or 10 Gy. Fluctuations in pO(2) were recorded with OxyLite probes prior to irradiation and 24 and 72 h after the radiation exposure. Radiation-induced changes in the tumor microenvironment (i.e. blood perfusion and extracellular volume fraction) were assessed by dynamic contrast-enhanced magnetic resonance imaging. Seventy-two hours after 10 Gy, tumor blood perfusion had decreased to approximately 40% of that prior to irradiation, whereas the extracellular volume fraction had increased by approximately 25%. Fluctuations in pO(2) were seen in most tumors, irrespective of radiation dose and time after irradiation. The mean pO(2), the number of fluctuations around the mean pO(2), the number of fluctuations around threshold pO(2) values of 1, 2, 3, 5, 7 and 10 mmHg, and the amplitude of the fluctuations were determined for each pO(2) trace. No significant differences were detected between irradiated and unirradiated tumors. The results showed that pO(2) fluctuations may occur in irradiated tumors and that the pO(2) fluctuation pattern in A-07 tumors exposed to 5 or 10 Gy is similar to that in untreated tumors. Consequently, these doses did not induce changes in the tumor microenvironment that were sufficient to cause detectable alterations in the pO(2) fluctuation pattern.  相似文献   

8.
During photodynamic therapy (PDT), low oxygenation levels, induced both by oxygen consumption and by vascular occlusion, can lead to an inefficient photochemical reaction that may compromise the efficacy of PDT. In the present studies, tumor oxygenation was measured before, during and after meta-tetrahydroxyphenylchlorin (mTHPC)-mediated PDT of murine RIF1 tumors and human mesothelioma xenografts (H-MESO1). Tumor pO2 was measured in real time with Eppendorf polarography, and the extent of relative hypoxia at specific times was measured by immunohistochemical staining. Significant decreases in median pO2 values, as well as an increase in the number of values below 2.5 mmHg, were seen during and after PDT in RIF1 tumors, although there was a large intertumoral variation. Tumor pO2 values did not change significantly in H-MESO1 tumors. Staining with antibodies against the hypoxia marker EF3 showed significant increases in relative hypoxia after PDT in both tumor types compared with separate groups of untreated controls. Our results are consistent with PDT-induced oxygen depletion (reduced pO2) leading to an increase in relative hypoxia in RIF1 tumors. Extensive necrosis in the H-MESO1 tumors may have prevented the detection of PDT-induced hypoxia using the Eppendorf polarographic needle, whereas immunohistochemistry did reveal increases in relative hypoxia.  相似文献   

9.

Background

Preclinical imaging requires anaesthesia to reduce motion-related artefacts. For direct translational relevance, anaesthesia must not significantly alter experimental outcome. This study reports on the effects of both anaesthetic and carrier gas upon the uptake of [64Cu]-CuATSM, [99mTc]-HL91 and [18F]-FMISO in a preclinical model of tumor hypoxia.

Methodology/Principal Findings

The effect of carrier gas and anaesthetic was studied in 6 groups of CaNT-bearing CBA mice using [64Cu]-CuATSM, [99mTc]-HL91 or [18F]-FMISO. Mice were anaesthetised with isoflurane in air, isoflurane in pure oxygen, with ketamine/xylazine or hypnorm/hypnovel whilst breathing air, or in the awake state whilst breathing air or pure oxygen. PET or SPECT imaging was performed after which the mice were killed for organ/tumor tracer quantitation. Tumor hypoxia was confirmed. Arterial blood gas analysis was performed for the different anaesthetic regimes. The results demonstrate marked influences on tumor uptake of both carrier gas and anaesthetic, and show differences between [99mTc]-HL91, [18F]-FMISO and [64Cu]-CuATSM. [99mTc]-HL91 tumor uptake was only altered significantly by administration of 100% oxygen. The latter was not the case for [18F]-FMISO and [64Cu]-CuATSM. Tumor-to-muscle ratio (TMR) for both compounds was reduced significantly when either oxygen or anaesthetics (isoflurane in air, ketamine/xylazine or hypnorm/hypnovel) were introduced. For [18F]-FMISO no further decrease was measured when both isoflurane and oxygen were administered, [64Cu]-CuATSM did show an additional significant decrease in TMR. When using the same anaesthetic regimes, the extent of TMR reduction was less pronounced for [64Cu]-CuATSM than for [18F]-FMISO (40–60% versus 70% reduction as compared to awake animals breathing air).

Conclusions/Significance

The use of anaesthesia can have profound effects on the experimental outcome. More importantly, all tested anaesthetics reduced tumor-hypoxia uptake. Anaesthesia cannot be avoided in preclinical studies but great care has to be taken in preclinical models of hypoxia as anaesthesia effects cannot be generalised across applications, nor disease states.  相似文献   

10.
In this study we compare oxygen tension (PO2) histograms measured with O2 microelectrodes and a new optical PO2 measurement device, the OxyLite, in normal tissues (mouse spleen and thymus) and in tumors (R3230Ac in rats) (n = 5-6). The transient response to glucose infusion or 100% O2 breathing (hyperoxia) was also measured in tumors. PO2 histograms of spleen and thymus with the two devices were not different. The OxyLite tumor PO2 histogram, however, was left-shifted compared with the microelectrode (median PO2 1.0 vs. 4.0 mmHg, P = 0.016). Both probes responded to acute hyperglycemia with a mean increase of 3-6 mmHg, but the microelectrode change was not significant. The OxyLite consistently recorded large PO2 increases (approximately 28 mmHg) with hyperoxia, whereas the microelectrode response was variable. The OxyLite averages PO2 over an area that contains interstitial and vascular components, whereas the microelectrode measures a more local PO2. This study demonstrates the importance of considering the features of the measurement device when studying tissues with heterogeneous PO2 distributions (e.g., tumors).  相似文献   

11.
Polarographic determination of tumor oxygenation by Eppendorf histography is currently under investigation as a possible predictor of radiotherapy outcome. Alternatively, the alkaline comet assay has been proposed as a radiobiological approach for the detection of hypoxia in clinical tumor samples. Direct comparisons of these methods are scarce. One earlier study with different murine tumors could not establish a correlation, whereas a weak correlation was reported for a variety of human tumors. Considering the different end points and spatial resolution of the two methods, a direct comparison for a single tumor entity appeared desirable. Anaplastic R3327-AT Dunning prostate tumors were grown on Copenhagen rats to volumes of 1-6 cm(3). Eppendorf histography (100-200 readings in 5 parallel tracks) for 8 different tumors revealed various degrees of oxygenation, with median pO(2) values ranging from 1.1 to 23 mmHg. Within 5 min after an acute exposure to 8 Gy (60)Co gamma rays, tumors were excised from killed animals and rapidly cooled to limit repair, and a single cell suspension was prepared for use with the comet assay. The resulting comet moment distributions did not exhibit two subpopulations (one hypoxic and the other aerobic), and a hypoxic fraction could not be calculated. Instead, the average comet moment distribution was taken as a parameter of overall strand break induction. Corresponding experiments with tumor cells grown in vitro allowed us to derive the relationship between the oxygen enhancement ratio (OER) for the average comet moment and oxygen partial pressure (Howard-Flanders and Alper formula). The validity of this relationship was inferred for cells exposed in situ, and the convolution of a pO(2) distribution with the formula of Howard-Flanders and Alper yielded an array of expected OER values for each tumor. The average expected OER correlated well with the average comet moment (r = 0.89, P < 0.01), and the in situ comet moment distributions could be predicted from the Eppendorf data when 50% repair was taken into account, assuming a 5-min damage half-life. The findings confirm the potential of interstitial polarography to reflect radiobiologically relevant intracellular oxygenation, but also underscore the confounding influence of differences in repair that may occur when cells are prepared from irradiated tissues for use with the comet assay.  相似文献   

12.
We have examined a hexafluorinated 2-nitroimidazole, CCI-103F, as a probe for hypoxic tumor cells by in vivo 19F magnetic resonance spectroscopy (MRS). Following initial intraperitoneal injections of the drug in tumor-bearing (Dunning R3327-AT1-Matlylu) rats, 19F spectra were obtained on an Otsuka 2.0T Vivospec spectrometer using a 1.5-cm surface coil. Signal at 1- and 2-h time points indicated initial biodistribution of drug in the tumor. At 4 and 8 h, a progressive increase in signal intensity was observed, indicating retention of drug within the tumor. Tumor signal remained detectable in 4 of 10 rats at 24 h, indicating possible nitroreductive bioactivation by hypoxic cells. Immunohistochemistry of these tumors revealed a staining pattern consistent with labeling of hypoxic cells. No detectable 19F signal was found at 24 h for the other rats, indicating complete washout of unbound drug. Immunohistochemical assessment of these tumors revealed some staining for bound drug at the periphery of necrotic zones. 31P-MRS of the tumors showed good correlation with the presence or absence of hypoxia as evaluated by 19F-MRS, T1- and T2-weighted images, and immunohistochemistry. These results provide the groundwork for further studies using this misonidazole analog for noninvasive identification of hypoxic tumor cells in vivo by MRS.  相似文献   

13.
Efaproxiral, an allosteric modifier of hemoglobin, reduces hemoglobin-oxygen binding affinity, facilitating oxygen release from hemoglobin, which is likely to increase tissue pO(2). The purpose of this study was to determine the effect of efaproxiral on tumor oxygenation and growth inhibition of RIF-1 tumors that received X radiation (4 Gy) plus oxygen breathing compared to radiation plus oxygen plus efaproxiral daily for 5 days. Two lithium phthalocyanine (LiPc) deposits were implanted in RIF-1 tumors in C3H mice for tumor pO(2) measurements using EPR oximetry. Efaproxiral significantly increased tumor oxygenation by 8.4 to 43.4 mmHg within 5 days, with maximum increases at 22-31 min after treatment. Oxygen breathing alone did not affect tumor pO(2). Radiation plus oxygen plus efaproxiral produced tumor growth inhibition throughout the treatment duration, and inhibition was significantly different from radiation plus oxygen from day 3 to day 5. The results of this study provide unambiguous quantitative information on the effectiveness of efaproxiral to consistently and reproducibly increase tumor oxygenation over the course of 5 days of treatment, modeling the clinical use of efaproxiral. Also, based on the tumor growth inhibition, the study shows the efaproxiral-enhanced tumor oxygenation was radiobiologically significant. This is the first study to demonstrate the ability of efaproxiral to increase tumor oxygenation and to increase the tumor growth inhibition of radiotherapy over 5 days of treatment.  相似文献   

14.
A twofold increase in left ventricular output was achieved by suturing a Telfon graft between the aorta and left atrium in dogs. Three weeks after surgery the animals were anesthetized and found to have left ventricular end-diastolic pressures averaging 36 mmHg with markedly elevated right ventricular systolic pressures (RVSP). Oxygen breathing resulted in a decrease in left ventricular pressures, RVSP, and arterial pressure in those animals which survived hypoxia. Fifty percent of the shunted dogs subsequently developed fatal pulmonary edema when allowed to breathe 10% oxygen in nitrogen. These animals showed no change in left ventricular function or pulmonary artery pressure (RVSP) in response to pure oxygen administration. It is suggested that there is a gradation of hemodynamic response to pure oxygen depending on the severity of left ventricular overload. In the severest case the 'fixing' of pulmonary hypertension may be due to neurohumoral mechanisms. The subsequent development of pulmonary edema in these animals with hypoxia either involves a change in permeability or a redistribution of hydrostatic pressure within the pulmonary vasculature.  相似文献   

15.
We investigated the degree to which strength of pulmonary hypoxic vasoconstriction affects perfusion of pulmonary shunt pathways in acute atelectasis. In 17 intact supine dogs (anesthetized, paralyzed, and ventilated) we produced left lower lobe atelectasis by occluding the lobar bronchus during oxygen inhalation. Subsequently, shunt fraction (reflecting perfusion of that lobe) was measured using an SF6 infusion while the dogs breathed room air; the mean was 26% (range 14-40%). Pulmonary pressor response to hypoxia was assessed in 13 dogs using the increase in pulmonary end-diastolic gradient (PDG) produced by inhalation of 10% oxygen. Those animals with the largest increase in pulmonary diastolic gradient had the smallest shunt fraction while breathing room air, whereas those with the smallest response had the largest shunt fraction. The contribution of local hypoxia to vasoconstriction in the shunt pathway was assessed in 13 dogs breathing room air by measuring the increase in shunt fraction produced by infusing prostaglandin E1 (PGE1). Those with the largest increase in shunt fraction had the smallest pre-PGE1 shunt fraction. Thus the strength of pulmonary vascular reactivity to hypoxia markedly influences the degree of vasoconstriction in shunt pathways and is a major determinant of shunt pathway perfusion.  相似文献   

16.
Hypoxia has a negative effect on the outcome of radiotherapy and surgery and is also related to an increased incidence of distant metastasis. In this study, tumor pO(2) measurements using a newly developed time-resolved luminescence-based optical sensor (OxyLitetrade mark) were compared with bioreductive hypoxia marker binding (pimonidazole). Single pO(2) measurements per tumor were compared to hypoxia marker binding in tissue sections using image analysis. Both assays were performed in the same tumors of three human tumor lines grown as xenografts. Both assays demonstrated statistically significant differences in the oxygenation status of the three tumor lines. There was also a good correlation between hypoxia marker binding and the pO(2) measurements with the OxyLitetrade mark device. A limitation of the OxyLitetrade mark system is that it is not yet suited for sampling multiple sites in one tumor. An important strength is that continuous measurements can be taken at the same position and dynamic information on the oxygenation status of tumors can be obtained. The high spatial resolution of the hypoxia marker binding method can complement the limitations of the OxyLitetrade mark system. In the future, a bioreductive hypoxic cell marker for global assessment of tumor hypoxia may be combined with analysis of temporal changes in pO(2) with the OxyLitetrade mark to study the effects of oxygenation-modifying treatment on an individual basis.  相似文献   

17.
The efficacy of radiation treatment depends upon local oxygen concentration. We postulated that the variability in responsiveness of tumor xenografts to a fixed dose of radioimmunotherapy might be related to the tumor pO2 at the time that radioimmunotherapy was administered. We evaluated the growth of xenografts of CALU-3 tumors, a non-small cell lung carcinoma, in response to an 8.9-MBq dose of 131I-RS-7-anti-EGP-1 and correlated tumor growth rate with initial tumor pO2 measured by EPR oximetry. The greatest growth delay in response to radioimmunotherapy had the highest initial pO2, and the fastest-growing tumors had the lowest initial pO2. We then determined the dynamic effect of radioimmunotherapy on tumor pO2 by serial measurements of pO2 for 35 days after radioimmunotherapy. This information could be important for ascertaining the likelihood that a tumor will respond to additional doses as part of a multiple dose scheme. Serial tumor pO2 measurements may help identify a window of opportunity when the surviving tumor regions will be responsive to a second round of radioimmunotherapy or a second therapeutic modality such as chemotherapy or an anti-vascular agent. After radioimmunotherapy, there was an increase in tumor pO2 followed by a decrease below initial levels in most mice. Thus defined times may exist when a tumor is more or less radiosensitive after radioimmunotherapy.  相似文献   

18.
Tumor hypoxia can be identified by [18F]FAZA positron emission tomography, or invasively using oxygen probes. The impact of anesthetics on tumor hypoxia remains controversial. The aim of this comprehensive study was to investigate the impact of isoflurane and ketamine/xylazine anesthesia on [18F]FAZA uptake and partial oxygen pressure (pO2) in carcinoma and muscle tissue of air- and oxygen-breathing mice.

Methods

CT26 colon carcinoma-bearing mice were anesthetized with isoflurane (IF) or ketamine/xylazine (KX) while breathing air or oxygen (O2). We performed 10 min static PET scans 1 h, 2 h and 3 h after [18F]FAZA injection and calculated the [18F]FAZA-uptake and tumor-to-muscle ratios (T/M). In another experimental group, we placed a pO2 probe in the tumor as well as in the gastrocnemius muscle to measure the pO2 and perfusion.

Results

Ketamine/xylazine-anesthetized mice yielded up to 3.5-fold higher T/M-ratios compared to their isoflurane-anesthetized littermates 1 h, 2 h and 3 h after [18F]FAZA injection regardless of whether the mice breathed air or oxygen (3 h, KX-air: 7.1 vs. IF-air: 1.8, p = 0.0001, KX-O2: 4.4 vs. IF-O2: 1.4, p < 0.0001). The enhanced T/M-ratios in ketamine/xylazine-anesthetized mice were mainly caused by an increased [18F]FAZA uptake in the carcinomas. Invasive pO2 probe measurements yielded enhanced intra-tumoral pO2 values in air- and oxygen-breathing ketamine/xylazine-anesthetized mice compared to isoflurane-anesthetized mice (KX-air: 1.01 mmHg, IF-air: 0.45 mmHg; KX-O2 9.73 mmHg, IF-O2: 6.25 mmHg). Muscle oxygenation was significantly higher in air-breathing isoflurane-anesthetized (56.9 mmHg) than in ketamine/xylazine-anesthetized mice (33.8 mmHg, p = 0.0003).

Conclusion

[18F]FAZA tumor uptake was highest in ketamine/xylazine-anesthetized mice regardless of whether the mice breathed air or oxygen. The generally lower [18F]FAZA whole-body uptake in isoflurane-anesthetized mice could be due to the higher muscle pO2-values in these mice compared to ketamine/xylazine-anesthetized mice. When performing preclinical in vivo hypoxia PET studies, oxygen should be avoided, and ketamine/xylazine-anesthesia might alleviate the identification of tumor hypoxia areals.  相似文献   

19.
Recently, a system that measures tissue oxygen tension using time-resolved luminescence-based optical sensors has become available commercially (Oxford Optronix, Oxford, England). Two experiments were conducted using this system. First, the oxygen tension distribution was measured in two tumor lines: a spontaneous mouse fibrosarcoma, FSa-II, and a human squamous cell carcinoma xenograft, FaDu. The area in which the pO(2) was equal to or lower than 2.5 mmHg was defined as the hypoxic lesion, and the hypoxic cell fraction was taken as the fraction of these measurements in a tumor. The measured hypoxic cell fractions were compared with those determined by the paired cell survival assay for tumors of various sizes. Second, the tumor tissue pO(2) was measured continuously after administration of two different anesthetics to evaluate the effect of these drugs on tissue pO(2). Results indicated a good agreement between the hypoxic cell fractions measured by this system and those determined by the paired cell survival curve assay for tumors smaller than approximately 500 mm(3). For tumors larger than approximately 500 mm(3), the hypoxic cell fractions measured by the oxygen probe system were higher than those measured by the paired cell survival assay. This may suggest that the hypoxic cell fraction measured by the oxygen probes included both hypoxic and necrotic areas in large tumors where necrotic lesions occupied a significant portion of the tumor. Continuous measurements of pO(2) after anesthesia (Nembutal, or ketamine plus xylazine) showed a consistent rise in the pO(2) during the first 20-30 min of measurement. Subsequently, the pO(2) values became constant or continued to rise slowly. For comparison, the tumor cell survivals were assayed after a dose of 20 Gy given in air at 5, 20 and 60 min after anesthesia. The result showed a decrease in cell survival only in tumors irradiated 20 min after an injection of Nembutal.  相似文献   

20.
Toxic influence of high oxygen concentration on pulmonary function and structures has been known for many years. However, the influence of high oxygen concentration breathing on defensive respiratory reflexes is still not clear. In our previous experiments, we found an inhibitory effect of 100 % oxygen breathing on cough reflex intensity in healthy guinea pigs. The present study was designed to detect the effects of hyperoxia on cough reflex in guinea pigs with allergic airway inflammation. In the first phase of our experiment, the animals were sensitized with ovalbumin. Thirty-two sensitized animals were used in two separate experiments according to oxygen concentration breathing: 100 % or 50 % oxygen for 60 h continuously. In each experiment, one group of animals was exposed to hyperoxia, another to ambient air. The cough reflex was induced both by aerosol of citric acid before sensitization, then in sensitized animals at 24 h and 60 h of exposition to oxygen/air in awake animals, and by mechanical stimulation of airway mucosa in anesthetized animals just after the end of the experiment. In contrast to 50 % oxygen, 100 % oxygen breathing leads to significant decrease in chemically induced cough in guinea pigs with allergic inflammation. No significant changes were present in cough induced by mechanical stimulation of airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号