首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fens, which extend over vast areas in the Northern hemisphere, are sources of the greenhouse gas CH4. Climate change scenarios predict a lowering water table (WT) in mires. To study the effect of WT drawdown on CH4 dynamics in a fen ecosystem, we took advantage of a WT drawdown gradient near a ground water extraction plant. Methane fluxes and CH4 production and oxidation potentials were related to microbial communities responsible for the processes in four mire locations (wet, semiwet, semidry, and dry). Principal component analyses performed on the vegetation, pH, CH4, and WT results clearly separated the four sampling locations in the gradient. Long‐term lowering of WT was associated with decreased coverage of Sphagnum and aerenchymatic plants, decreased CH4 field emissions and CH4 production potential. Based on mcrA terminal restriction fragment length polymorphism the methanogen community structure correlated best with the methane production and coverage of aerenchymatic plants along the gradient. Methanosarcinaceae and Methanocellales were found at the pristine wet end of the gradient, whereas the Fen cluster characterized the dry end. The methane‐oxidizing bacterial community consisted exclusively of Methylocystis bacteria, but interestingly of five different alleles (T, S, R, M, and O) of the particulate methane monooxygenase marker gene pmoA. The M allele was dominant in the wet locations, and the occurrence of alleles O, S, and T increased with drainage. The occurrence of the R allele that characterized the upper peat layer correlated with CH4 oxidation potential. These results advance our understanding of mire dynamics after long‐term WT drawdown and of the microbiological bases of methane emissions from mires.  相似文献   

2.
Mires forming an ecohydrological gradient from nutrient-rich, groundwater-fed mesotrophic and oligotrophic fens to a nutrient-poor ombrotrophic bog were studied by comparing potential methane (CH(4)) production and methanogenic microbial communities. Methane production was measured from different depths of anoxic peat and methanogen communities were detected by detailed restriction fragment length polymorphism (RFLP) analysis of clone libraries, sequencing and phylogenetic analysis. Potential CH(4) production changed along the ecohydrological gradient with the fens displaying much higher production than the ombrotrophic bog. Methanogen diversity also decreased along the gradient. The two fens had very similar diversity of methanogenic methyl-coenzyme M reductase gene (mcrA), but in the upper layer of the bog the methanogen diversity was strikingly lower, and only one type of mcrA sequence was retrieved. It was related to the Fen cluster, a group of novel methanogenic sequences found earlier in Finnish mires. Bacterial 16S rDNA sequences from the fens fell into at least nine phyla, but only four phyla were retrieved from the bog. The most common bacterial groups were Deltaproteobacteria, Verrucomicrobia and Acidobacteria.  相似文献   

3.
Wetlands, including peatlands, are the main source of natural methane emission. Well-defined fen microsites have different methane emissions rates, but it is not known whether the methane-producing Archaea communities vary at these sites. Possible horizontal variations of communities, in a natural oligotrophic fen, were analysed by characterizing the methanogens from two well-defined microsites: Eriophorum lawn and Hummock. Community structures were studied at two different layers of the fen, showing, respectively, high and low methane production. The structure of methanogen populations was determined using molecular techniques targeting the 16SrRNA gene and combined denaturing gradient gel electrophoresis (DGGE) and restriction fragment length polymorphism (RFLP) analysis. Results subjected to non-metric multidimensional scaling (MDS), diversity indices calculation and phylogenetic analysis revealed that upper layer communities changed with site while deeper layer communities remained the same. Phylogenetic analyses revealed six different clusters of sequences grouping with only two known orders of methanogens. Upper layers of Hummock were dominated by sequences clustering with members of Methanomicrobiales and sequences dominating the upper part of the Eriophorum lawn were related to members of the order Methanosarcinales. Novel methanogenic sequences were found at both sites at both depths. Vegetation characterizing the microsites probably influences the microbial communities in the layers of the fen where methane is produced.  相似文献   

4.
Methanogen Communities in a Drained Bog: Effect of Ash Fertilization   总被引:1,自引:0,他引:1  
Forestry practises such has drainage have been shown to decrease emissions of the greenhouse gas methane (CH4) from peatlands. The aim of the study was to examine the methanogen populations in a drained bog in northern Finland, and to assess the possible effect of ash fertilization on potential methane production and methanogen communities. Peat samples were collected from control and ash fertilized (15,000 kg/ha) plots 5 years after ash application, and potential CH4 production was measured. The methanogen community structure was studied by DNA isolation, PCR amplification of the methyl coenzyme-M reductase (mcr) gene, denaturing gradient gel electrophoresis (DGGE), and restriction fragment length polymorphism (RFLP) analysis. The drained peatland showed low potential methane production and methanogen diversity in both control and ash-fertilized plots. Samples from both upper and deeper layers of peat were dominated by three groups of sequences related to Rice cluster-I hydrogenotroph methanogens. Even though pH was marginally greater in the ash-treated site, the occurrence of those sequences was not affected by ash fertilization. Interestingly, a less common group of sequences, related to the Fen cluster, were found only in the fertilized plots. The study confirmed the depth related change of methanogen populations in peatland.  相似文献   

5.
The removal of plants and soil to bedrock to eradicate exotic invasive plants within the Hole-in-the-Donut (HID) region, part of the Everglades National Park (Florida), presented a unique opportunity to study the redevelopment of soil and the associated microbial communities in the context of short-term primary succession and ecosystem restoration. The goal of this study was to identify relationships between soil redevelopment and activity and composition of methanogenic assemblages in HID soils. Methane production potentials indicated a general decline in methanogenic activity with restoration age. Microcosm incubations strongly suggested hydrogenotrophic methanogenesis as the most favorable pathway for methane formation in HID soils from all sites. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogenic assemblages. Clone libraries were dominated by sequences related to hydrogenotrophic methanogens of the orders Methanobacteriales and Methanococcales and suggested a general decline in the relative abundance of Methanobacteriales mcrA with time since restoration. Terminal restriction fragment length polymorphism analysis indicated methanogenic assemblages remain relatively stable between wet and dry seasons. Interestingly, analysis of soils across the restoration chronosequence indicated a shift in Methanobacteriales populations with restoration age, suggesting genotypic shifts due to site-specific factors.  相似文献   

6.
Depth related diversity of methanogen Archaea in Finnish oligotrophic fen   总被引:12,自引:0,他引:12  
The annual rate of CH4 release and potential CH4 production has recently been studied in the Salmisuo fen in eastern Finland but the microbiota responsible for the CH4 production has not been examined. The diversity of the methane producing Archaea was analysed, at different depths, in the most representative microsite (Eriophorum lawn) of the fen. Methanogen populations were studied using primers amplifying a region of the methyl-coenzyme M reductase gene. PCR products were analysed by denaturing gradient gel electrophoresis and restriction fragment length polymorphism (RFLP) analysis of clone libraries. A representative of each RFLP group was sequenced. The study revealed a change of the methanogen populations with depth. Sequences from the upper layers of the fen grouped in a novel ‘Fen cluster’ and were related to Methanomicrobiales. Sequences retrieved from the deeper layers of the fen were related to Methanosarcinales via the Rice Cluster-I.  相似文献   

7.
Hydro-ecological analysis of the Biebrza mire (Poland)   总被引:2,自引:0,他引:2  
Vegetation composition and structure of 58 sites along gradients in the valley mire of Biebrza, Poland, are related to physical and chemical variables of groundwater and peat. The three most prominent hydrochemical processes in the valley are (a) dissolution of calcite; (b) dissolution of iron, manganese and aluminium; and (c) enrichment with nitrogen and potassium. Major factors determining these processes are vertical flow of the groundwater and river flooding.Within the rheophilous zone of the mire, calcium-richness of the shallow groundwater and base-saturation of the peat are caused by upward seepage of groundwater originating from adjacent higher grounds. This groundwater movement keeps the larger part of the mire saturated with calcium.Good correlations exist between hydrochemistry and vegetation patterns. Groundwater-fed sites support a characteristic rich fen vegetation (Caricetum limoso-diandrae) with a low biomass production. The flood-plain vegetation consists of highly-productive communities of Glycerietum maximae and Caricetum elatae. In a belt in the Upper Basin where neither flooding nor upward seepage occurs, succession, probably caused by intensified drainage, leads to a dwarf-shrub vegetation (Betuletum humilis; poor fen).  相似文献   

8.
The removal of plants and soil to bedrock to eradicate exotic invasive plants within the Hole-in-the-Donut (HID) region, part of the Everglades National Park (Florida), presented a unique opportunity to study the redevelopment of soil and the associated microbial communities in the context of short-term primary succession and ecosystem restoration. The goal of this study was to identify relationships between soil redevelopment and activity and composition of methanogenic assemblages in HID soils. Methane production potentials indicated a general decline in methanogenic activity with restoration age. Microcosm incubations strongly suggested hydrogenotrophic methanogenesis as the most favorable pathway for methane formation in HID soils from all sites. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogenic assemblages. Clone libraries were dominated by sequences related to hydrogenotrophic methanogens of the orders Methanobacteriales and Methanococcales and suggested a general decline in the relative abundance of Methanobacteriales mcrA with time since restoration. Terminal restriction fragment length polymorphism analysis indicated methanogenic assemblages remain relatively stable between wet and dry seasons. Interestingly, analysis of soils across the restoration chronosequence indicated a shift in Methanobacteriales populations with restoration age, suggesting genotypic shifts due to site-specific factors.  相似文献   

9.
Question: Why do similar fen meadow communities occur in different landscapes? How does the hydrological system sustain base‐rich fen mires and fen meadows? Location: Interdunal wetlands and heathland pools in The Netherlands, percolation mires in Germany, Poland, and Siberia, and calcareous spring fens in the High Tatra, Slovakia. Methods: This review presents an overview of the hydrological conditions of fen mires and fen meadows that are highly valued in nature conservation due to their high biodiversity and the occurrence of many Red List species. Fen types covered in this review include: (1) small hydrological systems in young calcareous dune areas, and (2) small hydrological systems in decalcified old cover sand areas in The Netherlands; (3) large hydrological systems in river valleys in Central‐Europe and western‐Siberia, and (4) large hydrological systems of small calcareous spring fens with active precipitation of travertine in mountain areas of Slovakia. Results: Different landscape types can sustain similar nutrient poor and base‐rich habitats required by endangered fen meadow species. The hydrological systems of these landscapes are very different in size, but their ground water flow pattern is remarkably similar. Paleoecological research showed that travertine forming fen vegetation types persisted in German lowland percolation mires from 6000 to 3000 BP. Similar vegetation types can still be found in small mountain mires in the Slovak Republic. Small pools in such mires form a cascade of surface water bodies that stimulate travertine formation in various ways. Travertine deposition prevents acidification of the mire and sustains populations of basiphilous species that elsewhere in Europe are highly endangered. Conclusion: Very different hydrological landscape settings can maintain a regular flow of groundwater through the top soil generating similar base‐rich site conditions. This is why some fen species occur in very different landscape types, ranging from mineral interdunal wetlands to mountain mires.  相似文献   

10.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   

11.
Minerotrophic fen peatlands are widely distributed in northern latitudes and, because of their rapid turnover of organic matter, are potentially larger sources of atmospheric methane than bog peatlands per unit area. However, studies of the archaeal community composition in fens are scarce particularly in minerotrophic sites. Several 16S rRNA-based primer sets were used to obtain a broad characterization of the archaeal community in a minerotrophic fen in central New York State. A wide archaeal diversity was observed in the site: 11 euryarchaeal and 2 crenarchaeal groups, most of which were uncultured. The E1 group, a novel cluster in the order Methanomicrobiales, and Methanosaetaceae were the codominant groups in all libraries and results of terminal restriction fragment length polymorphism (T-RFLP) analysis. Given its abundance and potential hydrogenotrophic methane contribution, the E1 group was targeted for culture attempts with a low-ionic-strength medium (PM1). Initial attempts yielded Methanospirillum-dominated cultures. However, by incorporating a T-RFLP analysis as a quick selection tool for treatments and replicates, we were able to select an enrichment dominated by E1. Further dilutions to 10(-9) and tracking with T-RFLP yielded a strain named E1-9c. E1-9c is a novel coccoid hydrogenotrophic, mesophilic, slightly acidophilic methanogen and is highly sensitive to Na(2)S concentrations (requires <0.12 mM for growth). We propose E1-9c as the first representative of a novel genus in the Methanomicrobiales order.  相似文献   

12.
Questions: How do climate conditions and the site's ecohy‐ drological properties affect the age and size structure of natural Pinus sylvestris stands on pristine boreal mires? How do the long‐term stand dynamics on mires proceed as stands age? Do the mire stands reach a balanced, old‐growth stage? Location: Boreal mire forests in southern and northern Finland. Methods: Tree age and diameter distributions were analysed in 52 stands in two climate areas and in two mire site types with different ecohydrological properties. Temporal stand dynamics were examined by (1) comparing the graphs of the stands’ mean tree ages by diameter at breast height (1.3 m) classes and (2) describing the changes in stand characteristics and stand age and size structures as a function of stand dominant age in a chronosequence. Results: In the south, the DBH distributions were mostly unimodal and bell‐shaped in both site type groups. Age distributions were multimodal and flat in fully‐stocked sites but more uneven in sparsely forested composite sites. In the north, both the age and size distributions were clearly uneven in both site type groups. Tree age and size variation increased with stand age, but levelled out in the long term. Particularly in the south, the abundance of small trees decreased as stand age increased. Conclusions: The pine stands on pristine boreal mires are more dynamic than anticipated and are generally not characterised by a balanced, self‐perpetuating structure. Their dynamics reflect differences in climate and ecohydrology: on stocked sites in favourable boreal conditions, the stands showed structures typically resultant of inter‐tree competition processes that control tree growth and regeneration, whereas in harsh boreal climates, the tree regeneration process is ongoing diversifying the stand structure.  相似文献   

13.
The natural recovery of vegetation on abandoned peat extraction areas lasts for decades and the result of restoration succession can be unpredictable. The aim of the study was to specify environmental factors that affect the formation of the pioneer stages of mire communities and, therefore, be helpful in the prediction of the resulting ecosystem properties. We used the national inventory data from 64 milled peatlands in Estonia, distributed over the region of 300 × 200 km. This is the first national‐scale statistical evaluation of abandoned extracted peatlands. During surveys, vascular plants, bryophytes, and residual peat properties were recorded on three microtopographic forms: flats, ditch margins, and ditches. The microtopography was the main factor distinguishing the composition of plant communities on flats and ditches, while ditch margins resembled flats. The extracted indicator species suggested two successional pathways, toward fen or raised bog community. A single indicator trait—the depth of residual peat, which combines the information about peat properties (e.g. pH, ash content, and trophicity status), predicted the plant community succession in microtopographic habitats. We suggest that peatland management plans about the cost‐efficient restoration of abandoned peat mining areas should consider properties of residual peat layer as the baseline indicator: milled peatfields with thin (<2.3 m) and well‐decomposed residual peat should be restored toward fen vegetation types, whereas sites with thick (>2.3 m) and less decomposed residual peat layer should be restored toward transitional mires or raised bogs. Specific methodological suggestions are provided .  相似文献   

14.
Questions: What impact do a wet and a dry growing season have on CO2 dynamics of mire plant communities along a primary succession gradient from the initiation stage to the bog stage? Location: Mires on a land uplift coast, Finland. Methods: We measured CO2 dynamics and vascular plant green area development on five mires that form a sequence of mire succession. TWINSPAN was used to define successional mire plant communities and regression analyses were used to explore the temporal variation in CO2 dynamics of the communities. Results: CO2 dynamics of successional plant communities reacted differently to a wet and a dry growing season. The net CO2 uptake rate of the earlier successional communities decreased in the dry growing season due to a decrease in photosynthesizing leaf area. Concurrently, CO2 uptake of the later successional communities moderately increased or did not change. Generally, the difference in net ecosystem exchange (NEE) between a dry and a wet year resulted from the altered rate of gross photosynthesis (PG) rather than ecosystem respiration (RE). Conclusions: Critical factors for the more stable carbon (C) gas dynamics in the later stages of mire succession were (1) higher autogenic control of the physical environment and (2) an increase in the number of factors regulating the PG rate. These factors may buffer mire ecosystems (in terms of the C sink function) from extreme and unfavourable variations in environmental conditions.  相似文献   

15.
Sphagnum growth and ecophysiology during mire succession   总被引:1,自引:0,他引:1  
Laine AM  Juurola E  Hájek T  Tuittila ES 《Oecologia》2011,167(4):1115-1125
Sphagnum mosses are widespread in areas where mires exist and constitute a globally important carbon sink. Their ecophysiology is known to be related to the water level, but very little is currently known about the successional trend in Sphagnum. We hypothesized that moss species follow the known vascular plant growth strategy along the successional gradient (i.e., decrease in production and maximal photosynthesis while succession proceeds). To address this hypothesis, we studied links between the growth and related ecophysiological processes of Sphagnum mosses from a time-since-initiation chronosequence of five wetlands. We quantified the rates of increase in biomass and length of different Sphagnum species in relation to their CO2 assimilation rates, their photosynthetic light reaction efficiencies, and their physiological states, as measured by the chlorophyll fluorescence method. In agreement with our hypothesis, increase in biomass and CO2 exchange rate of Sphagnum mosses decreased along the successional gradient, following the tactics of more intensely studied vascular plants. Mosses at the young and old ends of the chronosequence showed indications of downregulation, measured as a low ratio between variable and maximum fluorescence (F v/F m). Our study divided the species into three groups; pioneer species, hollow species, and ombrotrophic hummock formers. The pioneer species S. fimbriatum is a ruderal plant that occurred at the first sites along the chronosequence, which were characterized by low stress but high disturbance. Hollow species are competitive plants that occurred at sites with low stress and low disturbance (i.e., in the wet depressions in the middle and at the old end of the chronosequence). Ombrotrophic hummock species are stress-tolerant plants that occurred at sites with high stress and low disturbance (i.e., at the old end of the chronosequence). The three groups along the mire successional gradient appeared to be somewhat analogous to the three primary strategies suggested by Grime.  相似文献   

16.
The major environmental gradients underlying plant species distribution were outlined in two climatically and bio-geographically contrasting mires: a Swedish bog in the boreo-nemoral zone, and an Italian bog in the south-eastern Alps. Data on mire morphology, surface hydrology, floristic composition, peat chemistry and pore-water chemistry were collected along transects from the mire margin (i.e., the outer portion of the mire in contact with the surrounding mineral soil) towards the mire expanse (i.e., the inner portion of the mire). The delimitation and the extent of the minerotrophic mire margin were related to the steepness of the lateral mire slope which, in turns, controls the direction of surface water flow. The mineral soil water limit was mirrored in geochemical variables such as pH, alkalinity, Ca2+, Mg2+, Al3+, Mn2+, and SiO2 concentrations in pore-water, as well as Ca, Al, Fe, N and P contents in surface peat. Depending on regional requirements of plant species, different species were useful as fen limit indicators at the two sites. The main environmental factors affecting distribution of habitat types and plant species in the two mires were the acidity-alkalinity gradient, and the gradient in depth to the water table. The mire margin – mire expanse gradient corresponds to a complex gradient mainly reflected in a differentiation of vegetation structure in relation to the aeration of the peat substrate.  相似文献   

17.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   

18.
Vegetation, temperature and hydrology are major factors controlling wetland methane (CH4) dynamics. In order to test their importance, we measured CH4 emissions and environmental characteristics over 2 years from five mires representing a successional sequence, ranging in age from 178 to 2,520 years. We hypothesized CH4 emissions to be higher from the sedge-dominated fens than from the older bog stage. The more constant hydrological conditions at later successional stages as a consequence of the thicker peat layer appeared to result in lower temporal variation in CH4 emissions. Accordingly, the other controls, temperature and vegetation, had an effect on CH4 emissions only when the water table was sufficiently high. The seasonal variation in CH4 emissions was controlled by temperature only at the oldest study site, which had the lowest variation in water table. Within-season variation in emissions related to plant phenology was highest at the fen stage, which was dominated by aerenchymatous plants with a strong seasonal pattern, namely sedges and forbs. In contrast to our hypothesis, CH4 emissions increased with mire age towards the bog stage. However, the trend did not emerge during a rainy growing season, due to a rise in CH4 emissions at the younger stages. The results may imply two different mechanisms during mire succession: while old mires are able to avoid the perturbation associated with variation in the water table and maintain their function as CH4 emitters, young mires are exposed to perturbation but are able to recover their function.  相似文献   

19.
Abandonment of traditional farming practices, such as hay-making and pasturing, has resulted in rapid loss of open wet grassland habitats in Europe. The globally threatened Aquatic Warbler (Acrocephalus paludicola L.) is a bird species that occurs almost exclusively in open fen mires, which have virtually disappeared in Western Europe, but still persist locally in Eastern Europe. Focusing on the world’s most important breeding site for Aquatic Warbler, the Zvaniec fen mire in Belarus, we estimated Belarusian citizens’ willingness-to-pay for adequate conservation management of this fen mire and its focal species the Aquatic Warbler. Results from a discrete choice experiment indicated that Belarusian citizens were willing to pay for appropriate conservation programmes of the Zvaniec fen mire. Scything and mechanical mowing were preferred compared to controlled burning, and especially over herbicide treatment of encroaching shrubs. Conservation management was preferred over legal protection of wetland areas without management. Respondents considered such passive conservation to be insufficient to maintain open fen mire habitat and gave a higher priority to active conservation management programmes. These preferences are consistent with evidence-based knowledge about what is effective conservation management for the Aquatic Warbler. Given the gradual disappearance of Europe’s traditional cultural landscapes, we discuss the challenge to fund the maintenance of this biocultural biodiversity legacy.  相似文献   

20.
Drainage of peatlands for forestry starts a succession of ground vegetation in which mire species are gradually replaced by forest species. Some mire plant communities vanish quickly following the water-level drawdown; some may prevail longer in the moister patches of peatland. Drainage ditches, as a new kind of surface, introduce another component of spatial variation in drained peatlands. These variations were hypothesized to affect methane (CH4) fluxes from drained peatlands. Methane fluxes from different plant communities and unvegetated surfaces, including ditches, were measured at the drained part of Lakkasuo mire, Central Finland. The fluxes were found to be related to peatland site type, plant community, water-table position and soil temperature. At nutrient-rich fen sites fluxes between plant communities differed only a little: almost all plots acted as CH4 sinks (−0.9 to −0.4 mg CH4 m−2 d−1), with the exception of Eriophorum angustifolium Honck. communities, which emitted 0.9 g CH4 m−2 d−1. At nutrient-poor bog site the differences between plant communities were clearer. The highest emissions were measured from Eriophorum vaginatum L. communities (29.7 mg CH4 m−2 d−1), with a decreasing trend to Sphagna (10.0 mg CH4 m−2 d−1) and forest moss communities (2.6 mg CH4 m−2 d−1). CH4 emissions from different kinds of ditches were highly variable, and extremely high emissions (summertime averages 182–600 mg CH4 m−2 d−1) were measured from continuously water-covered ditches at the drained fen. Variability in the emissions was caused by differences in the origin and movement of water in the ditches, as well as differences in vegetation communities in the ditches. While drainage on average greatly decreases CH4 emissions from peatlands, a great spatial variability in fluxes is emerged. Emissions from ditches constantly covered with water, may in some cases have a great impact on the overall CH4 emissions from drained peatlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号