首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In some cultures of the flagellate Chrysochromulina polylepis Manton et Parke, established from cells isolated from the massive bloom in Skagerrak and Kattegat in 1988, we observed, two motile cell types. They were termed authentic and alternate cells and differed with respect to scale morphology. To investigate whether or not the two cell forms were joined in a sexual life cycle, the relative DNA content per cell and relative size of cells of several clonal cultures of C. polylepis were determined by flow cytometry. Percentages of authentic and alternate cells in the cultures were estimated by transmission electron microscopy. Pure authentic cultures (α) contained cells with the lowest level of DNA and were termed haploid. Two pure alternate cultures (β) contained cells with double the DNA content of authentic cells and were termed diploid. Other pure alternate cultures contained haploid cells only, or both haploid and diploid cells. Three cell types were observed, each capable of vegetative propagation: authentic haploid, alternate haploid, and alternate diploid cells. Both the haploid and diploid alternate cells were larger than the haploid authentic cells. Cultures containing diploid cells appeared unstable: cell type ratio and ploidy ratio changed during the experiment where this cell type was present, particularly when grown in continuous light. In contrast, cultures with only haploid cells remained unchanged at all growth conditions tested. Light condition may influence cell type ratio and ploidy ratio. Our attempt to induce syngamy by mixing different authentic haploid clones did not result in mating. Assuming that the authentic and alternate cell types are of the same species, the life cycle of C. polylepis includes three flagellated scale-covered cell forms. Two of the cell types are haploid and may function as gametes, and the third is diploid, possibly being the result of syngamy.  相似文献   

2.
The coordination of cell growth and division has been examined in isogenic haploid and diploid strains of Saccharomyces cerevisiae. The average cell volume of the haploid and diploid cells was unaffected by a range of environmental conditions and generation times. For most environments and generation times the mean cell volume of diploid cells was between 1.52 and 1.83 of the haploid cell volume. Both haploid and diploid cell volumes were reduced drastically when the cells were grown in the chemostat with glucose as the limiting substrate. In this environment diploid cells have the same mean cell volume as haploid cells. Diploid cells are more elongated than haploid cells, and the characteristic shape (eccentricity) of the cells is unaffected by all environmental conditions and generation times tested. Mother cell volume increased during the cell cycle, although the pattern of this increase was affected by the environmental conditions. Under most growth conditions detectable mother cell volume increase occurred only during the budding phase, whereas under conditions of carbon limitation detectable increase only occurred during the unbudded phase. A consequence of this result is that the mean cell volume of haploids at bud initiation is relatively constant in all environments, including carbon limitation. This suggests that there is a critical size for bud initiation for haploids which is constant and independent of environmental conditions. The results for diploids are more complex. Coordination of growth and division in haploid cells can be explained by a simple model initially developed for prokaryotes by Donachie. A modification of this model is proposed to account for the results with diploids.  相似文献   

3.
During "quasi-continuous" cultivation in rich and minimal media diploid yeast cells of Saccharomyces cerevisiae completely displace isogenic haploid ones. When Pichia pinus are cultivated in the minimal medium, the diploids also have an advantage over isogenic haploids. The results are discussed within the framework of the hypothesis of fixation of diploid phase in the course of biological evolution.  相似文献   

4.
A technique of hybridization of haploid methanol-utilizing yeast Pichia pinus MH4 is worked out using UV- and N-nitrosoguanidine-induced auxotrophic mutants. Vegetative diploid cultures are isolated. Tetrad analysis and random spore analysis have revealed a meiotic nature of spores, recombination of genetic material in the process of sporulation and the chromosomal nature of some mutations. A possibility to construct a genetic map of the yeast Pichia pinus MH4 is demonstrated on the basis of tetrad analysis. Three linkage groups are revealed. The life cycle in a homothalic haploid yeast, Pichia pinus, was demonstrated. They are capable to form zygotes and meiotic spores under conditions preventing vegetative growth.  相似文献   

5.
The effects of an acridine half-mustard, ICR 191, on the growth rate and ploidy of four haploid and two diploid lines of Rana pipiens cells in culture were studied. Growth curves indicate that the haploid and diploid cell lines were equally resistant to a 4-hour exposure of this drug (0.1 micrometer to 10 micrometer. ICR 191 treatment induced the haploid cell cultures to become diploid. The proportion of diploid cells increased progressively with respect to time after the 4-hour exposure period. The greater the concentration of ICR 191 applied, the more rapid the rate of conversion. Autoradiographic determinations of percent labelled nuclei indicate that DNA synthesis was not inhibited in haploid or in diploid cells. Therefore, the increased proportion of diploid cells did not originate from the small percentage of diploid cells in the initial population. Instead the haploid cells were converted to diploid cells. Time lapse cinematography indicated that the conversion mechanism was other than cell fusion. Conversion to higher ploidy did not occur when diploid cell cultures were exposed to ICR 191.  相似文献   

6.
Saccharomyces cerevisiae was grown in a rich medium under the conditions of "quasi-continuous" cultivation and, after 200-300 generations, its diploid cells almost completely displaced haploid cells from the original mixed "haploid-diploid" population where the ratio between diploid and haploid strains was either 1:1 or 1:100. The cultivation at 40 degrees C did not change the relative competitive ability of haploids and diploids. When cells were cultivated in a rich medium at 6 degrees C or in a minimal medium at 30 degrees C, none of the strains showed an advantage over others for about 200 generations. Haploid cells had an advantage over diploid cells during "quasi-continuous" growth in the minimal medium at 30 degrees C. When the temperature was elevated to 40 degrees C, diploid cells displaced haploid cells from the mixed population. No advantage was found for diploid or haploid cells grown in a medium with an elevated KCl content (1.5 M). Haploid cells had an advantage over diploid cells when Pichia pinus was cultivated in a minimal medium. The results are discussed using the hypothesis about the diploid phase being fixed in the course of biological evolution.  相似文献   

7.
The relative adaptation of isogenic haploid and diploid strains of yeast was investigated in different sets of physiological conditions. When all nutrients were present in excess, no difference in the reproductive rates of isogenic haploid and diploid strains of yeast was detected in both optimal and non-optimal growth conditions. Competition between haploid and diploid strains of yeast was observed when growth was limited by the concentration of a single nutrilite. Under certain conditions when fitness (reproductive rate) is determined by transport of an essential nutrilite that exists in very low concentrations, diploid cells were selected against. These environmental conditions are similar to those found in offshore marine environments where nutrients are often present in extremely low concentrations. The fitness of diploid cells was estimated to be.93 +/-.02 (haploid fitness = 1). The reduced fitness of diploid cells in this environment can be explained by the reduced surface area/volume ratio possessed by diploid cells in comparison to haploid cells. The fitnesses of haploid and diploid cells in these environments are closely correlated with geometric variations in these strains. These results are consistent with the hypothesis that diploid cells are simply double haploids, and diploidy per se does not confer any direct adaptive advantage. The mechanism of the evolution of diploidy as a dominant phase in the life cycle of higher plants and animals remains obscure.  相似文献   

8.
A review of the life history,reproduction and phenology of Gracilaria   总被引:1,自引:0,他引:1  
The basic life history of the red alga Gracilaria is of the three-phase Polysiphonia type but a number of species show deviations. Plants can bear both gametangia and tetrasporangia, either on separate parts of the thallus or on the same. Explanations include the in situ germination of tetraspores (allowing gametophytic thalli to be epiphytic on tetrasporophytes), the coalescence of spores or developing discs (resulting in chimaeras), mitotic recombination during cell division in the mature diploid thallus (resulting in patches of diploid male and female cells on the tetrasporophyte), a mutation eliminating the repression of female expression allowing haploid male plants to be bisexual and initial failure of cell walls to form during the development of tetraspores. Polyploids can be produced from plants with diploid gametangia. The sexes and phases are usually morphologically identical but gametophytes or their parts may be smaller. The growth rates of the sexes may differ and diploid juveniles may survive better than haploid. Neither polyploidy nor hybridization results in superior growth. The sex ratio is probably 1:1 but females may appear to be more abundant. Diploid and haploid phases are usually either about equal or diploids predominate, often depending on the type of substratum. At high latitudes reproduction peaks in late summer whereas in the tropics it may be high all year. In temperate regions growth rate is fastest and biomass highest in late summer; in the tropics peak biomass is mainly in the winter. Spermatia are effective for only a few h. Spores vary in size around 25 \m, diploid ones usually being larger. Cystocarps or tetrasporangia in the field may not currently be releasing spores. In the laboratory spore release shows a diurnal rhythm, peaking during the night or day according to the species. All the above attributes are potentially important in planning and executing Gracilaria cultivation.  相似文献   

9.
The yeast, Saccharomyces cerevisiae, was used as a model to investigate theories of ploidy evolution. Mutagenesis experiments using the alkylating agent EMS (ethane methyl sulphonate) were conducted to assess the relative importance that masking of deleterious mutations has on response to and recovery from DNA damage. In particular, we tested whether cells with higher ploidy levels have relatively higher fitnesses after mutagenesis, whether the advantages of masking are more pronounced in tetraploids than in diploids, and whether purging of mutations allows more rapid recovery of haploid cells than cells with higher ploidy levels. Separate experiments were performed on asexually propagating stationary phase cells using (1) prototrophic haploid (MAT alpha) and diploid (MATa/alpha) strains and (2) isogenic haploid, diploid and tetraploid strains lacking a functional mating type locus. In both sets of experiments, haploids showed a more pronounced decrease in apparent growth rate than diploids, but both haploids and diploids appeared to recover very rapidly. Tetraploids did not show increased benefits of masking compared with diploids but volume measurements and FACScan analyses on the auxotrophic strains indicated that all treated tetraploid strains decreased in ploidy level and that some of the treated haploid lines increased in ploidy level. Results from these experiments confirm that while masking deleterious mutations provides an immediate advantage to higher ploidy levels in the presence of mutagens, selection is extremely efficient at removing induced mutations, leading growth rates to increase rapidly over time at all ploidy levels. Furthermore, ploidy level is itself a mutable trait in the presence of EMS, with both haploids and tetraploids often evolving towards diploidy (the ancestral state of S. cerevisiae) during the course of the experiment.  相似文献   

10.
Selection and the Evolution of Genetic Life Cycles   总被引:1,自引:0,他引:1       下载免费PDF全文
C. D. Jenkins 《Genetics》1993,133(2):401-410
The evolution of haploid and diploid phases of the life cycle is investigated theoretically, using a model where the relative length of haploid and diploid phases is under genetic control. The model assumes that selection occurs in both phases and that fitness in each phase is a function of the time spent in that phase. The equilibrium and stability conditions that allow for all-haploid, all-diploid, or polyphasic life cycles are considered for general survivorship functions. Types of stable life cycles possible depend on the form of the viability selection. If mortality rates are constant, either haploidy or diploidy is the only stable life cycle possible. Departures from constant mortality can give qualitatively different results. For example, when survivorship in each phase is a linear, decreasing function of the time spent in the phase, stable haploid, diploid or polyphasic life cycles are possible. The addition of genetic variation at a coevolving viability locus does not qualitatively affect the outcome with respect to the maintenance of polyphasic cycles but can lead to situations where more than one life cycle is concurrently stable. These results show that trade-offs between the advantages of being diploid and of being haploid may help explain the patterns of life cycles found in nature and that the type of selection may be critical to determining the results.  相似文献   

11.
    
Summary The radioprotective efficiency of cysteamine and cysteine has been studied on haploid and diploid, Saccharomyces cerevisiae, wild-type and various X-ray repair deficient rad mutants. The correlation between the radioprotecting action of cysteamine and cell repair capacity was demonstrated for diploid yeasts; such a correlation was not expressed for wild-type and rad mutant haploid yeast cells. It was concluded that the radioprotective action may involve cellular recovery processes, which may be mediated by a recombination-like mechanism, for which the diploid state is required. Liquid holding recovery was shown not to participate in radioprotection, judged by the absence of the influence of cysteine on the delay of the first postradiation budding as well as by the additive action of cysteine and liquid holding recovery.  相似文献   

12.
D. B. Goldstein 《Genetics》1992,132(4):1195-1198
The life cycle of eukaryotic, sexual species is divided into haploid and diploid phases. In multicellular animals and seed plants, the diploid phase is dominant, and the haploid phase is reduced to one, or a very few cells, which are dependent on the diploid form. In other eukaryotic species, however, the haploid phase may dominate or the phases may be equally developed. Even though an alternation between haploid and diploid forms is fundamental to sexual reproduction in eukaryotes, relatively little is known about the evolutionary forces that influence the dominance of haploidy or diploidy. An obvious genetic factor that might result in selection for a dominant diploid phase is heterozygote advantage, since only the diploid phase can be heterozygous. In this paper, I analyze a model designed to determine whether heterozygote advantage could lead to the evolution of a dominant diploid phase. The main result is that heterozygote advantage can lead to an increase in the dominance of the diploid phase, but only if the diploid phase is already sufficiently dominant. Because the diploid phase is unlikely to be increased in organisms that are primarily haploid, I conclude that heterozygote advantage is not a sufficient explanation of the dominance of the diploid phase in higher plants and animals.  相似文献   

13.
Many eucaryotic cell types exhibit polarized cell growth and polarized cell division at nonrandom sites. The sites of polarized growth were investigated in G1 arrested haploid Saccharomyces cerevisiae cells. When yeast cells are arrested during G1 either by treatment with alpha-factor or by shifting temperature-sensitive cdc28-1 cells to the restrictive temperature, the cells form a projection. Staining with Calcofluor reveals that in both cases the projection usually forms at axial sites (i.e., next to the previous bud scar); these are the same sites where bud formation is expected to occur. These results indicate that sites of polarized growth are specified before the end of G1. Sites of polarized growth can be influenced by external conditions. Cells grown to stationary phase and diluted into fresh medium preferentially select sites for polarized growth opposite the previous bud scar (i.e., distal sites). Incubation of cells in a mating mixture results in projection formation at nonaxial sites: presumably cells form projections toward their mating partner. These observations have important implications in understanding three aspects of cell polarity in yeast: 1) how yeast cell shape is influenced by growth conditions 2) how sites of polarized growth are chosen, and 3) the pathway by which polarity is affected and redirected during the mating process.  相似文献   

14.
Summary Haploid and diploid wild type strains, and three classes of radiation-sensitive mutants of Saccharomyces cerevisiae were tested for enhancement of UV-inactivation by caffeine in growth medium. In addition, the sensitizing effect of caffeine was studied in a haploid and a diploid wild type strain after gamma-irradiation. The drug sensitized the UV-irradiated cells of all strains except those reported to be only slightly UV-sensitive but highly sensitive to ionizing radiation. After gamma-irradiation, no caffeine-enhancement of killing was observed in stationary phase cells of either the haploid or the diploid strain. However, log-phase cells of both strains were partially sensitized.The results of both sets of experiments suggested that caffeine interferes with a recombinational repair occurring in cells in S or G2 phase.  相似文献   

15.
    
Summary Haploid and diploid wild types and UV-sensitive (uvs 1–3) strains were exposed to UV light in stationnary phase of growth and in log phase. The liquid hold recovery (LHR) was studied in both conditions. 1. It appears that haploid wild type resting cells (1st type of repair) are less capable of repair during dark holding than dividing cells (2nd type of repair). 2. The mutant uvs 1–3, which behaves like an excision defective strain, has lost the 1st type of repair. In contrast, the 2nd type of repair is still present. 3. The LHR is not additive to photorestoration (PR) for the 1st type of repair. On the contrary LHR and PR are additive for the 2nd type of repair. 4. Caffeine suppresses the 1st type of recovery and has only a slight effect on the 2nd type. 5. Both types of repair are functionning in diploid wild type cells where only the 2nd type of repair is present in UV-sensitive homozygous diploids uvs 1/uvs 1.From these data it is tentatively suggested that the 1st type of repair is related to the excision-resynthesis repair mechanism. The 2nd type of repair, active in dividing haploid cells and in diploid cells, may involve chromosomal exchanges.The effect of storage in the dark for the cytoplasmic petite induction by UV was examined in wild type strains. A negative liquid holding (NLH) effect (increase of the frequency of petites during storage) was observed for diploid cells and after low doses (up to 1,500 ergs/mm2) for haploid cells. At high doses a recovery is observed in haploid cells. An interpretation of this NLH effect is discussed. This differential response to dark holding for the lethal damage and cytoplasmic genetic damage supports the idea that there is a certain degree of independence between the nuclear and the mitochondrial systems with regard to the repair machinery.  相似文献   

16.
Leflunomide (LFM) is a novel anti-inflammatory and immunosuppressive drug, and inhibits the growth of cytokine-stimulated lymphoid cells in vitro. The effect of LFM on haploid and diploid cells of Saccharomyces cerevisiae was investigated to elucidate the molecular mechanism of action of the drug. Using a halo assay, LFM was shown to enhance the cell cycle arrest of haploid cells induced by mating pheromone alpha-factor. LFM also inhibited sporulation of diploid cells completely. S. cerevisiae genes which were cloned to suppress the anti-proliferative effect when present in increased copy number were introduced and examined for their activity to suppress the effect of LFM. Out of them, MLF4/SSH4, was found to suppress the sporulation-inhibitory effect of LFM. However, MLF4 failed to suppress the enhancing effect of LFM on pheromone response. Thus, LFM is suggested to act on haploid and diploid cells by different mechanisms.  相似文献   

17.
I S Sakovich  B D Efremov 《Genetika》1978,14(10):1834-1837
Haploid and diploid strains of Saccharomyces cerevisiae, Sacch. ellipsoideus and Pichia pinus were studied. Differences in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) sensitivity were detected both between haploids and diploids of the same species and between the corresponding strains of different species. Survival curves after MNNG treatment of all strains irrespectively of ploidy were exponential with "a tail". All the strains also exhibited the delayed appearance of clones from MNNG-treated cells. Three different forms of cell inactivation after MNNG treatment were detected similar to those observed after irradiation.  相似文献   

18.
摘要:【目的】产甘油假丝酵母作为一株优良高产甘油菌株,已成功应用于工业生产15年。近年来由于产甘油假丝酵母染色体倍性尚不明确,限制了对其进行遗传改造的研究进展,因而我们对产甘油假丝酵母染色体倍性研究,分析确定其染色体倍性。【方法】选用酿酒酵母细胞进行生孢,制备酿酒酵母单倍体细胞作对照,并选用热带假丝酵母作为二倍体酵母细胞对照,利用血球计数板得到热带假丝酵母、产甘油假丝酵母、单倍体及二倍体酿酒酵母细胞数,提取染色体,通过二苯胺检测法测定DNA含量。由于在相同紫外照射条件下单倍体细胞比二倍体细胞更容易死亡,因  相似文献   

19.
产甘油假丝酵母(Candida glycerinogenes)染色体倍性分析   总被引:2,自引:0,他引:2  
摘要:【目的】产甘油假丝酵母作为一株优良高产甘油菌株,已成功应用于工业生产15年。近年来由于产甘油假丝酵母染色体倍性尚不明确,限制了对其进行遗传改造的研究进展,因而我们对产甘油假丝酵母染色体倍性研究,分析确定其染色体倍性。【方法】选用酿酒酵母细胞进行生孢,制备酿酒酵母单倍体细胞作对照,并选用热带假丝酵母作为二倍体酵母细胞对照,利用血球计数板得到热带假丝酵母、产甘油假丝酵母、单倍体及二倍体酿酒酵母细胞数,提取染色体,通过二苯胺检测法测定DNA含量。由于在相同紫外照射条件下单倍体细胞比二倍体细胞更容易死亡,因  相似文献   

20.
A comparative study of the relative biological effectiveness (RBE) of alpha-particles 249Pu for reproductive and interphase forms of killing of haploid and diploid yeast cells of wild-type and their radiosensitive mutants has been carried out. The correlation between the RBE of alpha-particles and cell repair capacity was confirmed for reproductive death: it was the highest for diploid cells, smaller for haploid cells and the smallest for their radiosensitive mutants. To achieve the interphase cell killing much higher irradiation doses were used after which cells were incapable of liquid-holding recovery during the storing of exposed cells in non-nutrient media at 30 degrees C. The RBE values for this form of killing were significantly lower in comparison with reproductive death. These data are an additional argument supporting the point of view that the RBE of densely ionizing radiation is determined not merely by physical processes of energy absorption as it is traditionally believed but also by ability of cells to recover from DNA damages inflicted by ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号