首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligosaccharides are increasingly being recognized as important partners in receptor-ligand binding and cellular signaling. Surface plasmon resonance (SPR) is a very powerful tool for the real-time study of the specific interactions between biological molecules. We report here an advanced method for the immobilization of oligosaccharides in clustered structures for SPR and their application to the analysis of heparin-protein interactions. Reductive amination reactions and linker molecules were designed and optimized. Using mono-, tri-, or tetravalent linker compounds, we incorporated synthetic structurally defined disaccharide units of heparin and immobilized them as ligands for SPR. Their binding to an important hemostatic protein, von Willebrand factor (vWf), and its known heparin-binding domain was quantitatively analyzed. These multivalent ligand conjugates exhibited reproducible binding behavior, with consistency of the surface conditions of the SPR chip. This novel technique for oligosaccharide immobilization in SPR studies is accurate, specific, and easily applicable to both synthetic and naturally derived oligosaccharides.  相似文献   

2.
The design of glycoconjugates to allow the generation of multivalent ligands capable of interacting with the receptor DC-SIGN is a topic of high interest due to the role played by this lectin in pathogen infections. Mannose, a ligand of this lectin, could be conjugated at two different positions, 1 and 6, not implicated in the binding process. We have prepared mannose conjugates at these two positions with a long spacer to allow their attachment to a biosensor chip surface. Analysis of the interaction between these surfaces and the tetravalent extracellular domain (ECD) of DC-SIGN by SPR biosensor has demonstrated that both positions are available for this conjugation without affecting the protein binding process. These results emphasize the possibility to conjugate mannose at position 6, allowing the incorporation of hydrophobic groups at the anomeric position to interact with hydrophobic residues in the carbohydrate recognition domain of DC-SIGN, increasing binding affinities. This fact is relevant for the future design of new ligands and the corresponding multivalent systems for DC-SIGN.  相似文献   

3.
Selectins mediate tethering and rolling of leukocytes along the endothelium in a shear force-dependent manner. This key step in the cellular immune response is a target for experimental anti-inflammatory therapies. In the present paper we have examined the inhibitory activity of the minimal selectin ligand sialyl Lewis x (SiaLe(x)), its isomer sialyl Lewis a (SiaLe(a)) and sulfated tyrosine (sTyr) residues under dynamic flow reflecting the rheological conditions in the blood stream. The monomeric ligands were compared to multivalent polyacrylamide (PAA)-based conjugates under defined flow conditions on the molecular level, using surface plasmon resonance (SPR) technology, and on the cellular level, using a parallel-plate flow chamber. SPR measurements showed that a spatial arrangement of binding epitopes mimicking the selectin binding motif of the natural ligand PSGL-1 inhibits L-selectin binding successfully with IC(50) values in the nanomolar range. Using a flow chamber adhesion assay it could be shown that the multivalent inhibitors efficiently blocked rolling and tethering of NALM-6 pre-B cells transfected with human L-selectin to activated endothelium and that the inhibitory activity increased with rising shear stress. While PAA-conjugates were almost not inhibitory at low shear stress, NALM-6 cell rolling was nearly completely inhibited at high shear stress. The results indicate that multimeric conjugates of SiaLe(x), SiaLe(a) and sTyr are highly effective inhibitors of L-selectin-mediated cell adhesion particularly under flow conditions. Consequently, SiaLe(x), SiaLe(a) and/or sTyr on macromolecular carriers may be promising candidates for anti-inflammatory therapy.  相似文献   

4.
Cell adhesion to extracellular matrix (ECM) components through cell-surface integrin receptors is essential to the formation, maintenance and repair of numerous tissues, and therefore represents a central theme in the design of bioactive materials that successfully interface with the body. While the adhesive responses associated with a single ligand have been extensively analyzed, the effects of multiple integrin subtypes binding to multivalent ECM signals remain poorly understood. In the present study, we generated a high throughput platform of non-adhesive surfaces presenting well-defined, independent densities of two integrin-specific engineered ligands for the type I collagen (COL-I) receptor alpha(2)beta(1) and the fibronectin (FN) receptor alpha(5)beta(1) to evaluate the effects of integrin cross-talk on adhesive responses. Engineered surfaces displayed ligand density-dependent adhesive effects, and mixed ligand surfaces significantly enhanced cell adhesion strength and focal adhesion assembly compared to single FN and COL-I ligand surfaces. Moreover, surfaces presenting mixed COL-I/FN ligands synergistically enhanced FAK activation compared to the single ligand substrates. The enhanced adhesive activities of the mixed ligand surfaces also promoted elevated proliferation rates. Our results demonstrate interplay between multivalent ECM ligands in adhesive responses and downstream cellular signaling.  相似文献   

5.
Mature TGF-beta isoforms, which are covalent dimers, signal by binding to three types of cell surface receptors, the type I, II and III TGF-beta receptors. A complex composed of the TGF-beta ligand and the type I and II receptors is required for signaling. The type II receptor is responsible for recruiting TGF-beta into the heteromeric ligand/type I receptor/type II receptor complex. The purpose of this study was to test for the extent that avidity contributes to receptor affinity. Using a surface plasmon resonance (SPR)-based biosensor (the BIACORE), we captured the extracellular domain of the type II receptor (TbetaRIIED) at the biosensor surface in an oriented and stable manner by using a de novo designed coiled-coil (E/K coil) heterodimerizing system. We characterized the kinetics of binding of three TGF-beta isoforms to this immobilized TbetaRIIED. The results demonstrate that the stoichiometry of TGF-beta binding to TbetaRIIED was one dimeric ligand to two receptors. All three TGF-beta isoforms had rapid and similar association rates, but different dissociation rates, which resulted in the equilibrium dissociation constants being approximately 5pM for the TGF-beta1 and -beta3 isoforms, and 5nM for the TGF-beta2 isoform. Since these apparent affinities are at least four orders of magnitude higher than those determined when TGF-beta was immobilized, and are close to those determined for TbetaRII at the cell surface, we suggest that avidity contributes significantly to high affinity receptor binding both at the biosensor and cell surfaces. Finally, we demonstrated that the coiled-coil immobilization approach does not require the purification of the captured protein, making it an attractive tool for the rapid study of any protein-protein interaction.  相似文献   

6.
Development of biosensor devices typically requires incorporation of the molecular recognition element into a solid surface for interfacing with a signal detector. One approach is to immobilize the signal transducing protein directly on a solid surface. Here we compare the effects of two direct immobilization methods on ligand binding, kinetics, and signal transduction of reagentless fluorescent biosensors based on engineered periplasmic binding proteins. We used thermostable ribose and glucose binding proteins cloned from Thermoanaerobacter tengcongensis and Thermotoga maritima, respectively. To test the behavior of these proteins in semispecifically oriented layers, we covalently modified lysine residues with biotin or sulfhydryl functions, and attached the conjugates to plastic surfaces derivatized with streptavidin or maleimide, respectively. The immobilized proteins retained ligand binding and signal transduction but with adversely affected affinities and signal amplitudes for the thiolated, but not the biotinylated, proteins. We also immobilized these proteins in a more specifically oriented layer to maleimide-derivatized plates using a His(2)Cys(2) zinc finger domain fused at either their N or C termini. Proteins immobilized this way either retained, or displayed enhanced, ligand affinity and signal amplitude. In all cases tested ligand binding by immobilized proteins is reversible, as demonstrated by several iterations of ligand loading and elution. The kinetics of ligand exchange with the immobilized proteins are on the order of seconds.  相似文献   

7.
ConA-sepharose and polylysine-agarose beads effectively bound detergent-solubilized GABAA receptors from rat cerebrocortical membranes. The immobilized receptors showed a single class of high affinity binding sites specific for flunitrazepam or muscimol and displayed GABA-stimulated flunitrazepam binding. Maximal binding capacities of the ConA-immobilized receptor for the ligands were about three times greater than those of the polylysine-immobilized receptors. The relative affinities for each of the ligands were not affected by the method of receptor immobilization. The dissociation constants for muscimol of these immobilized receptors were somewhat dependent on the solubilizing agents used, but were considerably lower than those measured using extensively dialyzed rat cerebrocortical membranes.  相似文献   

8.
Protein microarrays are playing an increasingly important role in the discovery and characterization of protein-ligand interactions. The uniform orientation conferred by site-specific immobilization is a demonstrable advantage in using such microarrays. Here, we report on a general strategy for fabricating gold surfaces displaying a protein in a uniform orientation. An azido group was installed at the C-terminus of a model protein, bovine pancreatic ribonuclease, by using the method of expressed protein ligation and a synthetic bifunctional reagent. This azido protein was immobilized by Staudinger ligation to a phosphinothioester-displaying self-assembled monolayer on a gold surface. Immobilization proceeded rapidly and selectively via the azido group. The immobilized enzyme retained its catalytic activity and was able to bind to its natural ligand, the ribonuclease inhibitor protein. This strategy provides a general means to fabricate microarrays displaying proteins in a uniform orientation.  相似文献   

9.
Monomeric sialyl Lewis(X) (sLe(x)) and sLe(x)-like oligosaccharides are minimal structures capable of supporting selectin binding in vitro. However, their weak binding interactions do not correlate with the high-affinity binding interactions witnessed in vivo. The polyvalent display of carbohydrate groups found on cell surface glycoprotein structures may contribute to the enhanced binding strength of selectin-mediated adhesion. Detailed biochemical analyses of physiological selectin ligands have revealed a complicated composition of molecules that bind to the selectins in vivo and suggest that there are other requirements for tight binding beyond simple carbohydrate multimerization. In an effort to mimic the high-affinity binding, polyvalent scaffolds that contain multicomponent displays of selectin-binding ligands have been synthesized. Here, we demonstrate that the presentation of additional anionic functional groups in the form of sulfate esters, on a polymerized liposome surface containing a multimeric array of sLe(x)-like oligosaccharides, generates a highly potent, bifunctional macromolecular assembly. This assembly inhibits L-, E-, and P-selectin binding to GlyCAM-1, a physiological ligand better than sLe(x)-like liposomes without additional anionic charge. These multivalent arrays are 4 orders of magnitude better than the monovalent carbohydrate. Liposomes displaying 3'-sulfo Lewis(X)-like oligosaccharides, on the other hand, show slight loss of binding with introduction of additional anionic functional groups for E- and P-selectin and negligible change for L-selectin. The ability to rapidly and systematically vary the composition of these assemblies is a distinguishing feature of this methodology and may be applied to the study of other systems where composite binding determinants are important for high-affinity binding.  相似文献   

10.
Synthetic carbohydrate and glycoprotein mimics displaying sulfated saccharide residues have been assayed for their L-selectin inhibitory properties under static and flow conditions. Polymers displaying the L-selectin recognition epitopes 3',6-disulfo Lewis x(Glc) (3-O-SO3-Galbeta1alpha4(Fucalpha1alpha3)-6-O-SO3-Glcbeta+ ++-OR) and 3',6'-disulfo Lewis x(Glc) (3, 6-di-O-SO3-Galbeta1alpha4(Fucalpha1alpha3)Glcbeta-OR) both inhibit L-selectin binding to heparin under static, cell-free binding conditions with similar efficacies. Under conditions of shear flow, however, only the polymer displaying 3',6-disulfo Lewis x(Glc) inhibits the rolling of L-selectin-transfected cells on the glycoprotein ligand GlyCAM-1. Although it has been shown to more effective than sialyl Lewis x at blocking the L-selectin-GlyCAM-1 interaction in static binding studies, the corresponding monomer had no effect in the dynamic assay. These data indicate that multivalent ligands are far more effective inhibitors of L-selectin-mediated rolling than their monovalent counterparts and that the inhibitory activities are dependent on the specific sulfation pattern of the recognition epitope. Importantly, our results indicate the L-selectin specificity for one ligand over another found in static, cell-free binding assays is not necessarily retained under the conditions of shear flow. The results suggest that monovalent or polyvalent carbohydrate or glycoprotein mimetics that inhibit selectin binding in static assays may not block the more physiologically relevant process of selectin-mediated rolling.  相似文献   

11.
Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow on- and off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling.  相似文献   

12.
Surface plasmon resonance (SPR) biosensors offer a unique opportunity to study the binding activity of G protein-coupled receptors (GPCRs) in real time with minimal sample preparation. Using two chemokine receptors (CXCR4 and CCR5) as model systems, we captured the proteins from crude cell preparations onto the biosensor surface and reconstituted a lipid environment to maintain receptor activity. The conformational states of the receptors were probed using conformationally dependent antibodies, and by characterizing the binding properties of a native chemokine ligand (stromal cell-derived factor 1alpha). The results suggest that the detergent-solubilized receptors are active for ligand binding in the presence and absence of a reconstituted bilayer. There are three advantages to using this receptor-capturing approach: (1) there is no need to purify the receptor prior to immobilization on the biosensor surface, (2) the receptors are homogeneously immobilized through the capturing step, and (3) the receptors can be captured at high enough densities to allow the study of relatively low-molecular-mass ligands (2000-4000Da). We also demonstrated that the receptors are sensitive to the solubilizing conditions, which illustrates the potential for using SPR biosensors to rapidly screen solublization conditions for GPCRs.  相似文献   

13.
Dam TK  Brewer CF 《Biochemistry》2008,47(33):8470-8476
Many biological ligands are composed of clustered binding epitopes. However, the effects of clustered epitopes on the affinity of ligand-receptor interactions in many cases are not well understood. Clustered carbohydrate epitopes are present in naturally occurring multivalent carbohydrates and glycoproteins, which are receptors on the surface of cells. Recent studies have provided evidence that the enhanced affinities of lectins, which are carbohydrate binding proteins, for multivalent carbohydrates and glycoproteins are due to internal diffusion of lectin molecules from epitope to epitope in these multivalent ligands before dissociation. Indeed, binding of lectins to mucins, which are large linear glycoproteins, appears to be similar to the internal diffusion mechanism(s) of protein ligands binding to DNA, which have been termed the "bind and slide" or "bind and hop" mechanisms. The observed increasing negative cooperativity and gradient of decreasing microaffinity constants of a lectin binding to multivalent carbohydrates and glycoproteins result in an initial fraction of lectin molecules that bind with very high affinity and dynamic motion. These findings have important implications for the mechanisms of binding of lectins to mucins, and for other ligand-biopolymer interactions and clustered ligand-receptor systems in general.  相似文献   

14.
Loka RS  Cairo CW 《Carbohydrate research》2010,345(18):2641-2647
The detection of carbohydrate-protein interactions is often performed using techniques that require surface immobilization of the lectin or the glycan. A commonly used assay for lectin binding is surface plasmon resonance (SPR). We describe an implementation of the Staudinger ligation as a method to immobilize carbohydrate epitopes to a biosensor surface. This was accomplished by first introducing an azide functionality to a carboxymethyldextran surface, followed by reaction with a phosphane-modified carbohydrate ligand. The chemistry employed is extremely mild and was easily adapted to a commercial biosensor system. Using this approach, we investigated the binding of jacalin and wheat germ agglutinin (WGA) to galactose, lactose, and N-acetyl-lactosamine. We observed that WGA binding shows evidence of multivalent interaction with the surface. Additionally, we found that jacalin binding was influenced by the presence of a flexible and hydrophobic galactosyl aglycone.  相似文献   

15.
Surface immobilization of biomolecules is a fundamental step in several experimental techniques such as surface plasmon resonance analysis and microarrays. Oxime ligation allows reaching chemoselective protein immobilization with the retention of native-like conformation by proteins. Beside the need for chemoselective ligation of molecules to surface/particle, equally important is the controlled release of the immobilized molecules, even after a specific binding event. For this purpose, we have designed and assessed in an SPR experiment a peptide linker able to (i) anchor a given protein (enzymes, receptors, or antibodies) to a surface in a precise orientation and (ii) release the immobilized protein after selective enzymatic cleavage. These results open up the possibility to anchor to a surface a protein probe leaving bioactive sites free for interaction with substrates, ligands, antigens, or drugs and successively remove the probe-ligand complex by enzymatic cleavage. This peptide linker can be considered both an improvement of SPR analysis for macromolecular interaction and a novel strategy for drug delivery and biomaterial developments.  相似文献   

16.
It is established that achieving higher binding affinities in carbohydrate-protein interactions requires multivalent presentations of the sugar ligands at the receptor binding site. Several inhibition, calorimetric, mass balance, and other studies have reiterated the beneficial effects of molecular level clustering of the sugar ligands for tight binding to the receptors. We have undertaken an effort to study the multivalent effects involving larger assemblies, represented by micelles, and their lectin interactions. The micelles were constituted with monomer bearing one- or two-sugar moieties at the monomolecular level and with varying the distances between the sugar moieties. Micellar aggregation studies and dynamic light scattering (DLS) studies afforded details of the aggregation numbers and the hydrodynamic diameters of various glycolipid (GL) micelles. The GL micelles were used as analytes of surface plasmon resonance (SPR) experiments on a lectin concanavalin A (Con A)-immobilized surface. SPR studies of the micelle-lectin interactions demonstrate that the ligand-receptor binding can be fit into the bivalent analyte model of interaction. Furthermore, micelles formed from two-sugar containing GLs are able to elicit favorable kinetic association rate constants in comparison to the micelles constituted with one-sugar containing GLs. The kinetic rate constants across the micelles and the effect of the sugar valencies in the GLs are discussed.  相似文献   

17.
The transforming growth factor beta (TGF-β) signaling pathway plays myriad roles in development and disease. TGF-β isoforms initiate signaling by organizing their cell surface receptors TβRI and TβRII. Exploration and exploitation of the versatility of TGF-β signaling requires an enhanced understanding of structure-function relationships in this pathway. To this end, small molecule, peptide, and antibody effectors that bind key signaling components would serve as valuable probes. We focused on the extracellular domain of TβR1 (TβRI-ED) as a target for effector screening. The observation that TβRI-ED can bind to a TGF-β coreceptor (endoglin) suggests that the TβRI-ED may have multiple interaction sites. Using phage display, we identified two peptides LTGKNFPMFHRN (Pep1) and MHRMPSFLPTTL (Pep2) that bind the TβRI-ED (K(d)≈ 10(-5) M). Although our screen focused on TβRI-ED, the hit peptides interact with the TβRII-ED with similar affinities. The peptide ligands occupy the same binding sites on TβRI and TβRII, as demonstrated by their ability to compete with each other for receptor binding. Moreover, neither interferes with TGF-β binding. These results indicate that both TβRI and TβRII possess hot spots for protein-protein interactions that are distinct from those used by their known ligand TGF-β. To convert these compounds into high affinity probes, we exploited the observation that TβRI and TβRII exist as dimers on the cell surface; therefore, we assembled a multivalent ligand. Specifically, we displayed one of our receptor-binding peptides on a dendrimer scaffold. We anticipate that the potent multivalent ligand that resulted can be used to probe the role of receptor assembly in TGF-β function.  相似文献   

18.
The vaccinia virus complement control protein (VCP) is involved in modulating the host inflammatory response by blocking both pathways of complement activity through its ability to bind C3b and C4b. Other activities arise from VCP's ability to strongly bind heparin. To map regions within VCP involved in binding complement and heparin experimentally, surface plasmon resonance (SPR) and recombinantly expressed VCP (rVCP) constructs were employed. Using C3b or heparin as the immobilized ligand, various rVCP constructs were tested for their ability to bind. Results suggest that VCP is the smallest functional unit able to bind C3b, thereby blocking complement activity, and only a single site, the large basic region near the C-terminus, is involved in heparin binding. Kinetic analysis was also performed to determine the relative binding affinities between rVCP and complement (C3-MA and C4b), as well as rVCP and heparin. rVCP was found to possess a significantly greater affinity for C3-MA than C4b, as indicated by the 1.50e3-fold greater association rate constant (k(a)). This study provides insights for the design of new therapeutic proteins capable of blocking complement activation.  相似文献   

19.
We report a combined photochemical and electrochemical method to pattern ligands and cells in complex geometries and gradients on inert surfaces. This work demonstrates: (1) the control of density of immobilized ligands within overlapping photopatterns, and (2) the attached cell culture patterned onto ligand defined gradients for studies of directional cell polarity. Our approach is based on the photochemical activation of benzoquinonealkanethiols. Immobilization of aminooxy terminated ligands in selected region of the quinone monolayer resulted in patterns on the surface. This approach is unique in that the extent of photochemical deprotection, as well as ligand immobilization can be monitored and quantified by cyclic voltammetry in situ. Furthermore, complex photochemical patterns of single or multiple ligands can be routinely generated using photolithographic masks. Finally, this methodology is completely compatible with attached cell culture and we show how the subtle interplay between cell-cell interactions and underlying peptide gradient influences cell polarization. The combined use of photochemistry, electrochemistry and well defined surface chemistry provides molecular level control of patterned ligands and gradients on surfaces.  相似文献   

20.
We developed a surface plasmon resonance (SPR) assay to estimate the interactions of antimicrobial agents with the dipeptide terminal of lipid II (d-alanyl-d-alanine) and its analogous dipeptides (l-alanyl-l-alanine and d-alanyl-d-lactate) as ligands. The established SPR method showed the reproducible immobilization of ligands on sensor chip and analysis of binding kinetics of antimicrobial agents to ligands. The ligand-immobilized chip could be used repeatedly for at least 200 times for the binding assay of antimicrobial agents, indicating that the ligand-immobilized chip is sufficiently robust for the analysis of binding kinetics. In this SPR system, the selective and specific binding characteristics of vancomycin and its analogs to the ligands were estimated and the kinetic parameters were calculated. The kinetic parameters revealed that one of the remarkable binding characteristics was the specific interaction of vancomycin to only the d-alanyl-d-alanine ligand. In addition, the kinetic binding data of SPR showed close correlation with the antimicrobial activity. The SPR data of other antimicrobial agents (e.g., teicoplanin) to the ligands showed correlation with the antimicrobial activity on the basis of the therapeutic mechanism. Our SPR method could be a valuable tool for predicting the binding characteristics of antimicrobial agents to the dipeptide terminal of lipid II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号